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Abstract. The relatively new integral transform called the Sumudu transform method  

can be used to solve partial differential equations with variable coefficients and as well as 

intricate problems in engineering and applied mathematics without resorting to a new  

frequency domain. Unlike the other integral transforms, the Sumudu transform has scale 

and unit-preserving properties. However, the method is still not widely known or used for 

solving differential equations especially in the area of applied mathematics and engineer-

ing. As a means of demonstrating the potency of the method, the paper applied the Sumudu 

transform to present analytical solutions of a one-dimensional problem of heat transfer  

between an inert gas and an ultralow thermal conductivity porous medium. The developed 

analytical solutions are used to investigate the heat propagation in the porous medium.  

Depending on the initial temperature, it is established from the study that there are snap-

shots of the heat wave propagating and a sharp heat front propagation through the medium 

during its heating or cooling. This sharp front is difficult to detect and quantify by numeri-

cal methods. Hence, exact analytical solutions are presented in this study. As it is demon-

strated in this study, it is hoped that the Sumudu transform method will be applied to other 

various complex engineering problems. 
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1. Introduction 

The recent advancements in materials studies show the importance and various 

applications of nanoporous materials with ultralow thermal conductivity. Indis-

putably, the nanoporous materials have excellent thermal insulation due to their  

ultralow thermal conductivities. Consequently, they have been applied in various 

industrial and engineering processes such as high temperature energy storage 

packed beds [1], capillary electrochromatography [2], or food engineering [3] 
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where the heat transfer between an inert gas and a low thermal conductivity porous 

material are demonstrated. Also, the study of mechanical and thermal behaviours 

of ultralow thermal conductivity nanostructured materials, such as thin films, super- 

lattices, nanowires and nanocomposites have been the research focus of a large 

number of recent studies [4, 5]. Such ultralow thermal conductivity nanostructured 

materials present a thermal conductivity only a few percent larger than that of air, 

being smaller than the corresponding theoretical lower bound for a solid, referred 

to as Einstein limit [6]. In order to provide good physical insights into thermo-

mechanical behaviours of the material and also to study the significance of various 

system parameters affecting the mechanical and thermal behaviours of the material, 

various theoretical studies have been carried out [7-11]. The solutions of the full set 

of nonlinear partial differential equations for the present problem under both con- 

stant [7] and variable [8] porosity have been obtained by numerical methods [9]. 

However, the numerical methods are inherent with high computational cost and 

time. Moreover, the validation of the numerical methods is simplified when a set  

of simple analytical solutions is known.  

Therefore, the classical way of finding an exact analytical solution is obviously 

still very important since it serves as an accurate benchmark for the numerical solu-

tions. Also, the experimental data are useful to access the mathematical models, but 

are never sufficient to verify the numerical solutions of the established mathematical 

models. When exact analytical solutions are available, they provide good insights 

into the significance of various system parameters affecting the phenomena as it 

gives continuous physical insights rather than pure numerical or computation 

methods. An exact analytical expression is more convenient for engineering calcu-

lations compare with experimental or numerical studies and it is an obvious starting 

point for a better understanding of the relationship between physical quantities/ 

properties. It is convenient for parametric studies, accounting for the physics of the 

problem and appears more appealing than the numerical solutions. Development of 

exact analytical solutions for differential equations involves the applications of in-

tegral transforms (Laplace, Fourier, Mellin, Hankel, etc.), the method of separation 

of variables, the method of parameters variation, Green functions, etc. However,  

in recent times, a new integral transform method called Sumudu transform was 

originally proposed by Watugala [12, 13], its properties were established by Asiru 

[14-16]. Subsequently, its principle, procedure and applications were exploited by 

Weerakoon [17, 18]. As a means of demonstrating its potency along side its appeal- 

ing properties, Eltayeb and Kilicman [19-21] and others researchers [22-24] have 

applied the method to solve various ordinary and partial differential equations.  

It was shown that the method has scale and unit-preserving properties and can be 

used to solve partial differential equations with variable coefficients and also, intri-

cate problems in engineering mathematics and applied sciences without resorting  

to a new frequency domain. Nevertheless, the new integral transform is still not 

widely known or used in engineering and applied mathematics.  

The Sumudu transform method is applied to the present problem under investi-

gation. In this paper, the method is used to develop analytical solutions of the heat 
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transfer between an inert gas and a porous matrix. The analytical solutions are used 

to investigate the heat propagation in the porous medium. The developed analytical 

solutions of the heat transfer between a non-reactive gas flow through a porous 

medium gives great physical insight into the dynamics of the system. 

2. Mathematical model and the assumptions 

Let us consider the heat transfer between a gas and a porous solid, long enough 

to be considered as semi-infinite in extent, under the following assumptions:  

the gas is an incompressible Newtonian fluid, with negligible viscous dissipation, 

negligible heat conduction among the fluid particles, and the fluid motion is only in 

the axial direction of the solid, from the inlet to the outlet, in quasi-steady condi-

tions; the solid has a constant porosity and negligible radial temperature gradient, 

with only an axial temperature gradient. This two-phase problem is modelled 

through the system of coupled partial differential equations [11]: 

  f f

f f f f s f

T T
c v h T T

t x
 

  
   
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Initial condition (both phases start in thermal equilibrium at To) 

 0, T , 0f s ot T T x     (3) 

Boundary conditions: 

 0, 0, T f fot x T    (4a) 

 0, lim ( , ) lim ( , )f s o
x x

t T x t T x t T
 

    (4b) 

where x is the axial position along the medium, t is time, the subscripts f and s 

stand for the fluid and the solid matrix, respectively, T is the temperature, q is the 

density, cs is the specific heat of the solid, cf  is the specific heat at constant pressure 

of the fluid, vf  is the fluid flow velocity, h is the heat transfer coefficient between 

the fluid and the solid, ks is the thermal conductivity, and ε is the effective porosity. 

It should be pointed out that for an ultra low thermal conductivity solid, ks has  

a very small value that approaches zero. Also, the convective heat transfer dom-

nates the heat transfer in the fluid/gas to the point that the conductive heat transfer 

is negligible. Therefore, Eqs. (1) and (2) become: 
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and the initial and the boundary conditions become 

 0, T , 0f s ot T T x     (7) 

 0, 0, Tf fot x T    (8) 

Equations (5)-(8) can be nondimensionalized by using the following dimen-

sionless variables 
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The dimensionless forms of Eqs. (5) and (6) are 
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the dimensionless initial condition is given as 

 0, 0, 0, 0f s X       (12) 

and the boundary condition in nondimensional form is 

 0, 0, 1fX     (13) 

Applying the Sumudu transform to Eqs. (10)-(12), one arrives at 
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The boundary condition in the Sumudu domain 

 1, 0, 0f X u     (16) 

From Eq. (15)  
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On substituting Eq. (17) into Eq. (14), we have 
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A further simiplification of Eq. (18) results in 

 

1
,

1 1 1 1
, ,

1
1

f

f f

d X
u

X X
u u dX u u

u



  

   
              

    
 

 (19) 

Equation (19) can also be written as 
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After integration of Eq. (21), the equation becomes 
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On substituting Eq. (22) into Eq. (17), we have 
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Applying the inverse Sumudu transform to Eq. (22) and (23) with the applica-

tion of convolution theorem, using the Bromwich integral inversion Theorem, one 

arrives at: 
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where H(u) is the Heavisides unit step function. Eqs. (24) and (25) can be numeri-

cally evaluated using Simpson’s, trapezoidals, Weddle’s rule or by means of  

numerical quadrature rule such as the adaptive Gauss-Kronrod quadrature.  

Preferably, one can transform Eqs. (24) and (25) numerically by adopting 

Simon’s approach as used in the inverse Laplace transform to inverse the Sumudu 

transform: 
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The above Eqs. (26) and (27) are the models of the heat convection through the  

porous medium, the boundary condition at x = 0 generates a temperature wavefront 

propagating at constant velocity, equal to unity in nondimensional units. 

3. Results and discussion 

The analysis in the previous section shows the use of the Sumudu transform  

in the development of exact analytical solutions to the model of a one-dimensional 

problem of heat transfer between an inert gas and an ultralow thermal conductivity 

porous medium. The results of the analysis of temperature profiles for the gas and 

solid are show in Figures 1 and 2. 
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Fig. 1. Evolution of the profiles of the temperatures of the gas for β = 0.5 

at different times 
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Fig. 2. Evolution of the profiles of the temperatures of the solid matrix for β = 0.5 

at different times 
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Figures 1 and 2 show the temporal evolution of the dimensionless temperatures 

θf (τ, X) and θs(τ, X), respectively. The figure shows snapshots of the heat wave 

propagating from the left to the right corresponding to the heating of the solid by 

the gas. Figures 1 and 2 show the temperature profiles for the gas and solid, respec-

tively, for β = 0.5, corresponding to a situation in which the gas (solid) decreases 

(increases) its temperature faster (slower) than as β increases. Figure 1 shows that 

the height of the gas front decreases quickly, resulting in a temperature profile 

smoother and more similar to that of a diffusive equation. Similarly, Figure 2 

shows that the profile of the solid temperature also resembles that of a diffusive 

front, showing a spatial derivative rapidly approaching to zero. The temperature  

of the porous medium at the inlet increases until reaching that of the incoming  

gas flow, equal to unity in non-dimensional variables. As n increases (not shown), 

a sharp discontinuous front propagating at unit speed is noticed. This sharp front 

presented by the analytical method is difficult to detect and quantify by numerical 

methods. Therefore, the present solution can be used to validate numerical schemes 

for heat transfer between fluids and porous media with negligible or non-negligible 

thermal conductivity. Also, in the present work, Sumudu transform method is used 

and the same results were obtained as in the previous work [11]. Although the data 

of the past work were not available for comparison, a close look at the results in  

the present work and the work of Pérez et al. [11] shows very good agreements. 

The results in the present work are developed as benchmarks for the future results 

on the same problem. 

4. Conclusions 

The analytical solutions of the problem of heat transfer between an inert gas and 

an ultralow thermal conductivity porous solid have been obtained using Sumudu 

transform method. The results of the temporal evolution of the dimensionless tem-

peratures of the gas and solid matrix have been provided graphically. Also, the in-

herent snapshots of the heat wave propagating and a sharp heat front propagation 

through the medium during its heating or cooling which are very difficult to be de-

tected and quantified by numerical methods are detected and quantified by exact 

analytical solutions using Sumudu transforms. The present solutions can be used  

to validate numerical schemes for heat transfer between fluids and porous media 

with negligible or non-negligible thermal conductivity.  
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