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Spare parts allocation optimization in a multi-echelon support 
system based on multi-objective particle swarm optimization 

method

Optymalizacja alokacji części zamiennych w wieloszczeblowym 
systemie wsparcia na podstawie metody wielokryterialnej 

optymalizacji rojem cząstek
Spare parts allocation optimization in a multi-echelon support system presents a difficult problem which involves non-linear objec-
tive function and integer variables to be optimized. In this paper, a multi-objective optimization model was developed, which maxi-
mizes support probability and minimizes support costs. In order to solve the optimization problem, an improved multi-objective 
particle swarm optimization (MOPSO) method was utilized. In this method, techniques of dimensions reduction and rules-based 
multi-objective optimization were employed, which can improve the efficiency of MOPSO method. A numerical example was given 
to show the performance of proposed method.
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Optymalizacja alokacji części zamiennych w wieloszczeblowym systemie wspomagania stanowi trudne zagadnienie, które 
wymaga optymalizacji nieliniowej funkcji celu oraz zmiennych całkowitych.  W niniejszej pracy, opracowano wielokryterialny 
model optymalizacyjny, który maksymalizuje prawdopodobieństwo wsparcia i minimalizuje jego koszty. W celu rozwiązania prob-
lemu optymalizacyjnego, wykorzystano ulepszoną metodę wielokryterialnej optymalizacji rojem cząstek (MOPSO). W metodzie tej 
wykorzystano techniki redukcji wymiarów oraz wielokryterialnej optymalizacji algorytmowej, które mogą poprawić efektywność 
metody MOPSO. Zasady proponowanej metody zilustrowano przykładem numerycznym.

Słowa kluczowe: MOPSO; części zamienne; alokacja; optymalizacja; prawdopodobieństwo wsparcia.

1. Introduction

The importance of spare parts management has increased in the 
past decades. The reason may be the increasing value of spare part 
inventory investment, and higher requirement of system availability 
and support level for technically advanced systems. Spare parts allo-
cation is to allocate spare parts over different echelons of inventories 
to grantee a high efficiency of support system. Therefore, the purpose 
of spare parts optimal allocation is to achieve the maximal integrated 
economic benefit and spare part supportability. This presents a NP 
hard problem and efforts have been made by using methodologies of 
system decision-making, operational research and engineering eco-
nomics theory [14, 21]. For example, DuyQuang Nguyen [9], Dubi 
[7] studied spare parts allocation and optimization questions in pre-
ventive maintenance by Monte Carlo simulation method; CAO Hu-
izhi [12] set up a spare parts optimization model by fuzziness theory. 
Samuel L. Dreyer [19] and Doc Palmer [6] researched on spare parts 
management and optimization through enterprise resources plan 
(ERP); Derek T. Dwyer [5] and Ilgin M. Ali [13] studied spare parts 
stock quantity based on genetic arithmetic, and developed an optimi-
zation model; Faisal I. Khan [10] studied on spare parts allocation 
and optimization based on risk analysis within spares costs restriction. 
Although the above studies have obtained some productions, most of 
them took single equipment as the objective and optimized only for 

single objective. In fact, spare parts allocation should think 
about different kinds of equipments in a whole and think 
over more objectives such as spare parts support probabil-
ity, support costs etc. The spare parts allocation and optimi-
zation for multi-objects are more difficult for the complex 
relations among every objective, which may be conflict or 
supplement one another.

Particle swarm optimization (PSO) is a kind of evolu-
tionary calculation technology based on colony aptitude 
theory, which was brought forward by American Doctor 
Eberhart and Kennedy in 1995. The idea of PSO came from 
birds’ preying behavior. In the method, it was assumed that a 
group of birds were searching for foods at random, and there 
was only one piece of food in a certain area. All those birds 
didn’t know where the food was, while they knew the dis-
tance between the food and their current positions. Then the 
optimal strategy of finding food was to get the area where 
is nearest to the food from every bird’s current position. In 
PSO, each unity was taken as a particle with certain position 
and speed. The particle’s position presents the solution of 
the question.

By comparing with PSO, MOPSO needs to take into ac-
count of a number of objectives and make a choice from a 
set of feasible solutions. Therefore, the key problem is that 
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K		  – the number of equipment with certain type;
T		  – equipment working time;

jiE 		 – the demand of spare part i at jth inventory in the first 

echelon in a period of equipment working time;

iE 		  – the average demand of spare part i in the first echelon in a 

period of equipment working time;

[ ( )]iE B S 	 – the expected shortage of spare i for the first echelon 	

	 when the stock level in local inventory is Si;

[ ( , )]i oiE D S S 	 – the expected shortage of spare i in the second 

echelon, when stock level in the first echelon is Si, and the 
second echelon is So,i;

to		  – the average lead time in the first echelon to backorder 
spare parts;

mt 		  – the average lead time in the second echelon inventory to 
acquire spare parts;

jiS 		  – the stock level of spare part i at the jth inventory of the first 
echelon;

oiS
	
	 – the stock level of spare part i at the inventory of the second 

echelon;

( )jiP x 	 – the probability of ith spare part demand for jth inventory in 
   the first echelon j, and jix  is demand value of spare part i;

'
jix 		  – the amount of shortage for spare i at the jth inventory of 

the first echelon;

'( )o jiP x 	– the probability of ith spare demand at jth inventory of the 

first echelon;
ξi		  – the shortage probability of spare parts i in the second 

echelon;
ηi		  – the shortage probability of spare parts i in the first 

echelon;

iR 		  – the probability of repair for ith replaceable unit in the first 
echelon;

Ei
v		  – the maximum inventory for spare parts i in the first 

echelon;
Eoi		  – the average demand quantity of spare parts i in the second 

echelon;
Eoi

v		  – the maximum inventory for spare parts i in the second 
echelon;

Ci		  – the cost of a spare part i;

how to confirm a proper fitness function, which is used to measure 
the quality of a solution scheme for multi-objective case. According 
to fitness function, the solution methods for PSO can be classified 
as objective polymerization method, Pareto dominated based meth-
od and rule-based method. Objective polymerization method [4, 17] 
takes multi-objective function polymerized by power adding and con-
verts the multi objectives to a single objective. In Pareto dominated 
based method [1, 3, 16], the best isolated none-inferior solution was 
endowed with global minimum, which can induct MOPSO method to 
find a none-inferior solution with a symmetrical distribution. About 
rule based method [2, 8], not all objectives were considered at one 
time. According to different circs in optimization process, the fitness 
function was converted from different objective. 

A multi-objective optimization model of spare parts allocation 
was developed by using an improved MOPSO method, which takes 
the maximum support probability of spare parts and the minimal sup-
port costs as the objective functions. The solution techniques, such as 
dimensions reduction and rules-based multi-objective optimization, 
were utilized in order to improve the solving efficiency of MOPSO 
method.

2. Modeling of spare parts allocation and optimiza-
tion 

2.1.	 Problem description and model assumptions

Most inventory control problems in the real world involve multi-
ple echelons. For example, in many military logistics areas, support 
systems are operated in echeloned manner. In the paper, a two-eche-
lon spare support system is considered, where there are a number of 
maintenance facilities and spare parts inventories in the first echelon, 
and only one maintenance facility and one warehouse in the second 
echelon. Each maintenance facility has a spare inventory correspond-
ingly, which stores certain types of spare parts. When a repairable 
unit in an equipment fails, the failed unit will be replaced if there is 
a spare in the first echelon of inventory. Otherwise, a spare part is 
back-ordered from the second echelon of inventory. The local repair 
facility tries to repair the failed units which are repairable at the facil-
ity; otherwise, the units will be sent to the second facility for repair. 
The units which have been repaired will be stored in local inventories 
as spare parts. Besides, we have following assumptions.

The demand for each type of spare part is independent, and (1)	
each unit’s failure obeys exponential distribution;
All the replaceable units are significant components, and lack (2)	
of any one will lead to equipment down;
It is assumed that some failure modes of a unit are repairable, (3)	
and the repair rate is constant; 
Only corrective maintenance is considered and related spare (4)	
parts demand is assumed to follow Poisson distribution;
The maintenance capability is infinite, and repair of failed units (5)	
may be conducted once they are replaced from equipment;
Continuing examine strategy ((6)	 S-1, S) is adopted for the first 
echelon of spare inventory;
The lateral supply in the same maintenance facilities is not (7)	
considered. 

The spare part allocation relation is shown as Figure 1. Where, k 
denotes the sequence of specific type of equipment, and Nj denotes the 
equipment number of this type. 

2.2.	  Notations 

The notations used to develop the model are listed below: 
i		  – types of spare parts, which can be 1,2,…,I;
I		  – total number of spare parts types;
J		  – the number of maintenance facilities in the first echelon;

Fig.1. Relation of the spare parts allocation
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Tbfi		  – the mean-time between failures of spare parts i.

2.3.	 Development of the model

Demand of spare parts in the first echelon (1)	
Because ( )jiP x  denotes probability of spare parts demand for 

the first echelon j, and the number of demand is jix . The expected 
demand of spare part i in the first echelon can be expressed as:

	
0

( )
ji

ji ji ji
x

E x P x
∞

=

= ∑ 	 (1)

Shortage ratio of spare parts in the first echelon(2)	
Denote [ ( )]jiE B S  as the inventory shortage of spare i for the 

first echelon. It is the expectation of spare parts demand, which ex-
ceeds the stock level, jiS , in the first echelon. Hence, it can be ex-

pressed as: 

	
1

[ ( )] ( ) ( )
ji ji

ji ji ji ji
x S

E B S x S P x
∞

= +

= −∑ 	 (2)

The average demand of spare parts in the first echelon can be 
given by: 

	
1

J

i ji
j

E E
=

= ∑ 	 (3)

As there are J inventories in the first echelon, the expected short-
age of spare i can be obtained through summing the shortage over the 
J inventories. That is,

	
1

[ ( )] [ ( )]
J

i ji
j

E B S E B S
=

= ∑ 	 (4)

From Eqs.(3) and (4), we can have that the shortage ratio of spare 
i in the first echelon:

	 ηi
i

i

E B S
E

=
[ ( )]

	 (5)

The spare parts demand ratio in the second echelon(3)	
It is noted that when the demand for spare parts exceeds the stock 

level of the first echelon of inventory, a spare backorder for the second 
echelon of inventory will be conducted. Therefore, the probability of 
ith spare part demand for the second echelon 0

'( )jiP x  can be ex-

pressed as:

	

' ' '

' '

0

( ) ( ) 0

( ) ( ) 0
ji

ji

o ji j ji ji ji
S

o ji j ji ji
x

P x P x S x

P x P x x
=

 = + >

 = =


∑
	 (6)

The demand probability ( )o iP y  of spare i can be calculated using 

the '( )jiP x  dispersed k-fold discrete convolution, that is:

	
1 2

1 2
' ' '

( ) ( ' ) ( ' ) ( ' )
i i Ji i

o i o i o i o Ji
x x x y

P y P x P x P x
+ +⋅⋅⋅ =

= ⋅⋅ ⋅∑ 	 (7)

Actually, the right part of the above equation is a calculation of the 
k-fold discrete convolution, which can be solved by the Conv function 
in Matlab [11].

In the following, we will show that the demands of spare parts still 
follow Poisson distribution for the second echelon.

Consider the interval ],0[ t . Let N(t) denote the number of spare 

part demands within the interval ],0[ t  and X(t) denote the number of 

failures in the interval, and then X(t) can be represented by:

	 ∑
=

=
)(

1
)()(

tN

n
n tWtX 	 (8)

Here, )(tWn  is a binary variable defined by:

	 W t
otherwisen ( ) =

∈



1
0

i θ 	 (9)

Where θ is the set of failure modes of replaceable units which are 
repairable. And according to the previous assumption that 

RtWP n −== 1]1)([ .

For any real number u, the characteristic function, φX t u( ) ( )  of 

)(tX  can be given by:

	 φX t u E iuX t( ) ( ) {exp[ ( )]}= 	 (10)

Where i is an imaginary number, i.e. 1−=i , and E(Y) is the ex-
pectation of Y.
It can be shown that:

])([})())]({[exp()]}({exp[
0

ktNPktNtiuXEtiuXE
k

=== ∑
∞

=
  (11)

When k failures have occurred in ],0( t , i.e. ktN =)( , X(t) is the 

sum of k independent and identical random variables of )(tWn , then:

	 k
n tiuWEktNtiuXE )]})({exp[(})())]({[exp( == 	 (12)

As assumed above, N(t) is a NHPP, and then the probability of k 
demands occurring in the interval ],0( t  is given by:

	 P N t k d d k
t

k
t

[ ( ) ] ( ( ) ) exp[ ( ) ] / != = −∫ ∫λ τ τ λ τ τ
0 0

	 (13)

Where λ(τ) is the rate of failure occurrence at time τ.
Substituting equations (12) and (13) into Equation (11), and using 

equation (10), the characteristic function can be rewritten as:
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φ λ τ τ λ τ τX t
k

n
k

t
k

t
u E iuW t d d( ) ( ) ( {exp[ ( )]}) ( ( ) ) exp[ ( )= −

=

∞
∑ ∫ ∫

0 0 0
]] / !k

	
= − ∫exp{[ ( )] ( ) }( ,)E e diuW t

t
n 1

0
λ τ τ

	      = − = ∫exp{( ) [ ( ) ] ( ) }e P W t diu
n

t
1 1

0
λ τ τ 	 (14)

From equations (14) it follows that:

	 φ λ τ τX t
iu

t
u e R d( ) ( ) exp{( )( ) ( ) }= − − ∫1 1

0
	 (15)

This is a characteristic function of a random variable with a Pois-
son distribution. This implies that X(t) is a NHPP, and the expected 

number of failures in ],0( t is given by: 

	 Λ( , ) ( ) ( )0 1
0

t R d
t

= − ∫ λ τ τ 	 (16)

For the case of constant failure rate of replaceable unit, the de-
mand rate of spare in the second echelon of system can be expressed 
as: λ λoi i iR J= −( )1 .

When the demands of unit i obey Poisson distribution, we have:

	 P y t
ko i

k

k

y
ti

( ) ( )
!

=
=

−∑ λ λ

0
e 	 (17)

On the basis of demand probability of spare i in the second ech-
elon, we can obtain the expected demand of spare parts for the second 
echelon of inventory:

	 E y P yoi i
y

o i
i

=
=

∞
∑

0
( ) 	 (18)

The expected shortage of spare i for the second echelon can be 
expressed as:

	 E D S S y S P yi oi i oi o i
y Si oi

[ ( , )] ( ) ( )= −
= +

∞
∑

1
	 (19)

Then the shortage probability of spare parts i for the second ech-
elon can be denoted as:

	 ξi
i oi

oi

E D S S
E

=
[ ( )], 	 (20)

The average delay time for spare parts in the first echelon (4)	
The supply delay of spare parts in the first echelon can be divided 

into two cases. Firstly, there is a shortage of spares in first echelon but 
there are a number of spares in the second echelon. In this case, the 
delay time can be given by ( )1−ξ ηi i ot . Secondly, there is a shortage 

of spares both in first echelon and second echelon. In this case, the 
delay time can be expressed as η ξi i o mt t( )+ . Therefore, the average 

delay time of spare i in the first echelon can be given by:

	 T t t t t tDi i i o i i o m i o i i m= − + + = +( ) ( )1 ξ η ξη η ξη 	 (21)

The support probability for spare (5)	 i
It is assumed that life distribution of component i is known, and 

the mean time between failures of the component i can be obtained, 
then the steady-state support probability of spare parts i can be ex-
pressed as:

	 i

i

bf
i

bf Di

T
P

T T
=

+
	 (22)

Through the collation, we can obtain:

	

i

1 1 1

( ) ( ) [ ( ( )])

i

i

ji ji i oi

J

ji ji ji o m i oi o i
j x S y S

bf i oi

bf i oi oi

T
P

T x p x t t y p y

E E

E E S E S
∞ ∞

= = + = +

=
+ ⋅ +− −∑ ∑ ∑

0

1 1 0

1 1 0 1 1 0 1

( ) ( )

( ) ( ) ( ) ( ) [ ( ) ( ( )])

i

ji i

i

ji i ji ji i i i

J

ji ji i o i
j x y

J J

ji ji i o i ji ji ji o i o i m i oi o i
j x y j x S y y S

bf

bf

x p x y p y T

x p x y p y T x p x t y p y t y p yS S

∞ ∞

= = =

∞ ∞ ∞ ∞ ∞

= = = = = + = = +

⋅

=
⋅ + ⋅ +− −

∑∑ ∑

∑∑ ∑ ∑ ∑ ∑ ∑

(23)

Therefore, the support probability of all spare parts can be given by:

	 P PS i
i

I
=

=
∏

1
	 (24)

Multi-objective allocation and optimization model(6)	
The allocation and optimization model of spare parts can be ex-

pressed as: 

max
( ( )[

P
E

E E
S

bf oi ji
j

J

bf oi ji
j

J
ji

j

J
oi

T E

T E S t E

i

i ji o

=
+ −

=

= =

∑

∑ ∑

1

1 1
++ −=

∏
t E Sm oioi

i

N

( )]1
   (25)

	 min ( ( )C C S SS i
i

N
ji

j

J
oi= +

= =
∑ ∑

1 1
	 (26)

Subject to

	 0 11

1

≤

−

≤ ∀ ==

=

∑

∑

E S

E
i N

ji
j

J
ji

ji
j

J ,  1,2,..., 	 (27)

	 0 1≤
−

≤ ∀ =
E S

E
i Noi oi

oi
,  1,2,..., 	 (28)

	 0 ≤ ≤ ∀ =S E S i Nji i
v

ji, is an integer  1,2,...,, 	 (29)

	 0 0 1 2≤ ≤ ∀ =S E S i Noi oi
v

oi, , , , ,...,is an integer 	 (30)

Where, Eqs.(25) and (26) represent the optimization objectives 
which maximizing support probability of spare parts and minimizing 
the costs of spare parts.
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Constraint (27) means that the shortage rate of spare parts i in the 
first echelon is greater than or equal to 0, and less than or equal to 1.

Constraint (28) means that the shortage rate of spare parts i in the 
second echelon is greater than or equal to 0, and less than or equal to 1. 

Constraint (29)means that the stock quantity of spare parts i in 
the first echelon is an integer, which does not exceed the maximum 
inventory limit.

Constraint (30) means that the stock quantity of spare parts i in 
the second echelon is an integer, which dose not exceed the maximum 
inventory limit.

3. Solution of spare parts allocation and optimization 
models

3.1.	 Characteristic of the optimization model

It can be seen that spare parts allocation and optimization models 
are high-dimensional, non-linear, multi-objective optimization mod-
els from formula (25) to (30). So, the traditional optimization algo-
rithm is ineffective to these models. Therefore, an improved algorithm 
is presented in order to solve such an optimization problem, which 
includes the following characteristic of analysis and processing.

In practice, the supportability between various spare parts is (1)	
independent among them. Therefore, when support probabil-
ity of each spare parts getting the maximum, the probability 
of such spare parts will obtain maximum. Similarly, when the 
costs of each type of spare parts are minimal, the costs of such 
spare parts are also minimal. So dimensionality reduction can 
be used. Namely, optimized for each variety of spare parts, 
and then we can get the optimization solution of all kind of 
spare parts.
In the spare parts optimization and allocation models, there (2)	
are two different objective functions. Decision-makers prefer-
ences of these two objectives are different at different stages 
and with different tasks. Therefore, the rule based method for 
solving the MOPSO is more reasonable.
In the particle swarm optimization, ω is the most important (3)	
controllable parameter. For the premature of PSO method and 
late oscillation phenomenon in the near global optimal solu-
tion, the PSO method needs to be improved in order to enhance 
the quality and efficiency of the solution.

3.2.	 Particle representation

Using vector-based method, particle representations can be shown 
in Figure 2. Each particle corresponds to a spare part configuration 
program.

It is noted that },...,2,1{],,,...,...[ 1,,,1, Nnxxxxx mnmnjnnn ∈= + , 

(N presents the number of particles), Particle dimension is m+1; xn,j 
denotes the allocation number of spares i in the first echelon. 

},...,2,1{ mj∈ ,and m is the number of the first echelon institutions; 

1, +mnx denotes the allocation number of spares i in the second eche-

lon.

3.3.	 Fitness calculation

Fitness function is used to evaluate the pros and cons of the in-
dividual groups. The function values guide the movement direction 
and speed of the particle swarm. A rule-based method was employed 
to determine the fitness function, which compromises the two goals 
of optimization problem, that is, maximizing the support probability 
(Goal 1) and minimizing the support cost (Goal 2) for spare parts i. 
Clearly, when Goal 1 was implemented, we can simply confirm the 
neighborhood of Goal 2, and then calculate the fitness of each parti-
cle. 

3.4.	 Particle update

Particle swarm method takes on a rapid convergence speed, which 
can easily lead to the loss of population diversity. In order to prevent 
its fall into local optimal solution, this paper puts forward a dynamic 
swarm strategy for the selection of the two particle swarms. In this 
strategy, each particle swarm optimizes a single goal, and the global 
optimal value of the first particle swarms are used in the rate equa-
tion of the second particle swarm. While the global optimal value of 
the second particle swarm are used to update the first particle swarm. 
Namely:

S t S t c r S t S t c r Sv v p x pid id id id1 1 1 1 1 1 2 2 21⋅ ⋅ ⋅ ⋅ ⋅+ = + − +( ) ( ) [ ( ) ( )] [ω
ggd id

t S tx( ) ( )]− ⋅1

(31)

S t S t c r S t S t c r Sv v p x pid id id id2 2 1 1 2 2 2 2 11⋅ ⋅ ⋅ ⋅ ⋅+ = + − +( ) ( ) [ ( ) ( )] [ω
ggd id

t S tx( ) ( )]− ⋅2

(32)

S t S t v t i n d Dx x idid id1 11 1 1 1. .( ) ( ) ( ), ,+ = + + ≤ ≤ ≤ ≤    (33)

S t S t v t i n d Dx x idid id2 21 1 1 1. .( ) ( ) ( ), ,+ = + + ≤ ≤ ≤ ≤    (34)

	
v t S t S tid v vid id

( ) [ ( ) ( )] /= +
⋅ ⋅1 2

2
	 (35)

3.5.	 Weight improvement

In particle swarm optimization methods, the iner-
tia factor is the most important controllable parameter, 
which is used to control the influence degree of the cur-
rent speed on the updating speed. The larger the param-
eter value, the more beneficial for a wide range of global 
search. The smaller the parameter value, the more favo-
rable in the current range of local search. A large number 
of experiments[15, 18, 20] have shown that the effective-
ness of the algorithm is larger when the parameter value is 
between 0.4 and 1.4. In this article, the inertia factor was 
selected by the following formula:

	        ω ω
ω ω

g g
G

= −
−

max
max min

max
	 (36)

Fig.2. The sketch map of particle’s denotation
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In this formula, ωmax denotes the maximum inertia weight, ωmin 
denotes the minimum inertia weight, g denotes the iteration steps, and 
Gmax represents the maximum number of iteration steps.

3.6.	 Procedure of solution algorithm

The procedure of MOPSO solution algorithm is shown in Figure 3.

Step 1: Initialization. The non-inferior solution and particle swarm 
POP1, POP2 were initialized randomly. In the mean time, the ob-
jectives and constraints of each particle in particle swarm was 
computed. While, each particle’s velocity as well as the best point 
of each particle have traversed were initialized in the particle 
group.

Step 2: Update the particle swarms. The particle velocity can be up-
dated by equations (31) and (32), while the position of the particle 
can be updated according to equations (33) to (35).

Step 3: Update the non-inferior solutions.
Step 4: Update the optimal solution, which was found by each par-

ticle.
Step 5: Terminate the condition judgment. If the condition was satis-

fied, the procedure will be terminated, otherwise will go to step 2.

4. Numerical example

4.1.	 Description of the problem

It was supposed that in workshops X and Y both there are18 sets 
of production equipment. Spare parts A and B are two critical spare 
parts of the equipment. The mean time needed for backordering spares 
from the second echelon is 480 h, while the mean time for acquiring 
spares in the second echelon is 720 h. Pji, Sji, Soi and Tbf were listed 
in Table 1. In order to complete annual production tasks (at 1600 h), 
how to allocate such spare parts which can get the maximum support 
probability of the spare parts system, while the guaranteeing costs is 
minimum.

4.2.	 Problem solving and analysis

The basic data such as Eji Eoi and the highest reserves Ev
i, Eoi

v in dif-
ferent institutions can be calculated, which are shown in the Table 2.

In this paper, Matlab was used to program the MOPSO algorithm. 
The computer configuration is the Intel (R) Core (TM) i5, CPU 2.27 
GHz and Memory 2G. The size of the two particle swarms are all 40 
particles, and the number of iterations is 100 generations, ωmax is 1.2, 
ωmin is 0.5, C1 is 0.5, and C2 is 0.5. As a result, the average computa-
tion time is 6 sec. The results of the optimization of spare parts are 
shown in Table 3. The individual fitness values are shown in Figure 
4, and the non-inferior solutions distribution in the objective space is 
shown in Figure 5.

As can be seen from Table 3, when the support cost is ¥6900, the 
optimal allocation scheme is that 2 of spare part A are allocated in the 
second echelon and none in other echelons; and stock level of spare 
parts B is 9 in the second echelon. With this scheme, the spare sup-
port probability is 0.792. With the increasing support costs, the spare 
support probability is also increased. Decision-makers can select the 
suitable spare parts allocation scheme from the different optimization 
schemes according to the needs and actual conditions, which can meet 
the demands of the support probability and limit of spare parts costs.

Fig. 3. Procedure of rules based MOPSO solution algorithm

Table 1.	 Input data of the example 

Workshop 
Number 
of Equip-

ment 

Types of 
Spare parts Pji Tbf(h) Sji Soi

X 18
A 0.8 3500 5 2

B 0.75 2500 5 3

Y 18
A 0.9 3500 8 2

B 0.95 2500 8 3

Table 2.	 Basic data of the numerical example

Sequence 
number

Spare 
name Tbf(h) E1i E2i Eoi Ev

i Eoi
v Ci (RMB 

YUAN)

1 A 3500 7 8 2 10 3 1200

2 B 2500 9 11 7 12 8 500

Table 3.	 Optimization results of the spare parts allocation

Scheme

Allocation for 
spare A

Allocation for 
spare B

Support 
probability 

P

CA(RMB 
YUAN)

S11 S21 So1 S21 S22 So2

1 0 0 2 0 0 9 0.792 6900

2 0 0 2 0 0 10 0.823 7400

3 0 0 2 0 0 11 0.856 7900

4 0 0 3 0 0 9 0.871 8100

5 0 0 3 0 0 10 0.905 8600

6 0 0 3 0 0 11 0.941 9100

7 0 0 3 1 1 11 0.944 10100

8 1 1 3 0 1 11 0.946 12000

9 0 1 3 2 2 11 0.948 12300

10 1 1 3 2 2 11 0.950 13500

11 2 2 3 1 2 11 0.953 14200

12 2 2 3 2 2 11 0.955 15900
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Figure 4 shows the relation between optimal individual fitness and 
evolution generation. It is seen that the best individual fitness value basi-

cally turns to stabilization when the evolution generation is beyond 50.
The distribution of the non-inferior solutions in the objective 

space is shown in Figure 5. It can be seen that with the increasing of 
support costs with in a certain range, the support probability of spare 
is also rising. However, when the support probability of spare reached 
0.95, even with increasing the number of spare parts support costs, the 
changes in the probability is very small. Therefore, decision-makers 
can determine a suitable solution by the tradeoff between the two 
goals of the spare parts support probability and support costs. As a 
result, we can select a allocation scheme of spare parts from non-
inferior solutions.

In addition, the collections of non-inferior solutions in the target 
space are corresponding to the 12 different schemes in Table 3 respec-
tively. Policy-makers can make a tradeoff from the two goals of the 
probability of spare supportability and support costs to determine a 
suitable solution from the non-inferior solutions for the spare parts al-
location. For example, if the spare support probability is not less than 
0.90, and with a minimum cost, one can select the target space of the 
fifth non-inferior solutions (P=0.905, C=8600RMB¥). In this scheme, 
3 of spare part A are allocated in the second echelon and none in other 
echelons; and stock level of spare part B is 10 in the second echelon.

5. Conclusions

This paper develops an improved MOPSO method of spare parts 
allocation and optimization, which takes into account of multiple ob-
jectives such as support probability of spare parts and support costs, 
and focuses on the whole system of maintenance support. Compared 
with other methods, such as GA, and ANN, this method is more ef-
ficient to solve the non-linear, multi-objective and high-dimensional 
problems of the allocation and optimization models. At last, a numeri-
cal example has verified the feasibility and effectiveness of the mod-
els and algorithm for the spare parts. In this paper, we have assumed 
that the failure rate of a replaceable unit is constant, and there is no 
lateral supply between the inventories at the same echelon. However, 
it can be extended to consider lateral supply and other distributions of 
unit failures. This topic will be studied in our following research.

Fig. 4. The changing of best fitness in MOPSO for spare parts

Fig. 5.	 The distribution of Pareto solutions in the objective space for spare 
parts
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