PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A computational evaluation of sedentary lifestyle effects on carotid hemodynamics and atherosclerotic events incidence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Hemodynamics has a key role in the atheropathogenesis. Indeed, atherosclerotic phenomena occur in vessels characterized by complex geometry and flow pattern, like the carotid bifurcation. Moreover, the lifestyle is a significant risk factor. The aim of this study is to evaluate the hemodynamic effects due to two sedentary lifestyles -sitting and standing positions- in the carotid bifurcation in order to identify the worst condition and to investigate the atherosclerosis incidence. Methods: The computational fluid dynamics (CFD) was chosen to carry out the analysis, in which in-vivo non-invasive measurements were used as boundary conditions. Furthermore, to compare the two conditions, one patient-specific 3D model of a carotid bifurcation was reconstructed starting from computer tomography. Different mechanical indicators, correlated with atherosclerosis incidence, were calculated in addition to flow pattern and pressure distribution: the time average wall shear stress (TAWSS), the oscillatory shear index (OSI) and the relative residence time (RRT). Results: The results have highlighted that the bulb and the external carotid artery emergence are the most probable regions in which atherosclerotic events could happen. Indeed, low velocity and WSS values, high OSI and, as a consequence, areas with chaotic-swirling flow, with stasis (high RRT), occur. Moreover, the sitting position is the worst condition: considering a cardiac cycle, TAWSS is less than 17.2% and OSI and RRT are greater than 17.5% and 21.2%, respectively. Conclusions: This study suggests that if a person spends much time in the sitting position, a high risk of plaque formation and, consequently, of stenosis could happen.
Rocznik
Strony
43--52
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
  • Department of Medical and Surgical Sciences, "Magna Graecia" University, Viale Europa, Catanzaro, Italy
  • Department of Mechanical, Energetic and Management Engineering (DIMEG), University of Calabria, Ponte P. Bucci, Arcavacata, Rende(CS), Italy
autor
  • Department of Medical and Surgical Sciences, "Magna Graecia" University, Viale Europa, Catanzaro, Italy
  • Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology. Headquarters: "Magna Graecia" University, Viale Europa, Catanzaro, Italy
autor
  • Department of Medical and Surgical Sciences, "Magna Graecia" University, Viale Europa, Catanzaro, Italy
autor
  • Operative Unit of Vascular Surgery, "S. Anna Hospital”, Viale Papa Pio X, Catanzaro, Italy
autor
  • Operative Unit of Vascular Surgery, "S. Anna Hospital”, Viale Papa Pio X, Catanzaro, Italy
  • Department of Medical and Surgical Sciences, "Magna Graecia" University, Viale Europa, Catanzaro, Italy
  • Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology. Headquarters: "Magna Graecia" University, Viale Europa, Catanzaro, Italy
autor
  • Department of Medical and Surgical Sciences, "Magna Graecia" University, Viale Europa, Catanzaro, Italy
Bibliografia
  • [1] Azhim A., Ueno A., Tanaka M., Akutagawa M., Kinouchi Y., Evaluation of blood flow velocity envelope in common carotid artery for reference data, Biomed Signal Proces, 2011, 6(2):209-215, DOI:10.1016/j.bspc.2010.11.002.
  • [2] Caruso M. V., Gramigna V., Rossi M., Serraino G. F., Renzulli A., Fragomeni, G., A computational fluid dynamics comparison between different outflow graft anastomosis locations of Left Ventricular Assist Device (LVAD) in a patient‐specific aortic model, International journal for numerical methods in biomedical engineering, 2015, 31(2), DOI: 10.1002/cnm.2700.
  • [3] Cutnell J. D., Johnson K. W., Physics, Wiley 1998, New York.
  • [4] Dong J., Wong K. K., Tu J., Hemodynamics analysis of patient‐specific carotid bifurcation: A CFD model of downstream peripheral vascular impedance, International journal for numerical methods in biomedical engineering, 2013, 29(4):476-491, DOI: 10.1002/cnm.2529
  • [5] Frangos S. G., Gahtan V., Sumpio B., Localization of atherosclerosis: role of hemodynamics, Arch Surg-Chicago, 1999, 134(10):1142-1149, DOI:10.1001/archsurg.134.10.1142.
  • [6] Friedman M. H., Deters O. J., Mark F. F., Bargeron C. B., Hutchins G. M., Arterial geometry affects hemodynamics: a potential risk factor for atherosclerosis, Atherosclerosis, 1983, 46(2):225-231, DOI: 10.1016/0021-9150(83)90113-2.
  • [7] Gimbrone M. A., Topper J. N., Nagel T., Anderson K. R., GARCIA‐CARDEÑA, G. U. I. L. L. E. R. M. O., Endothelial dysfunction, hemodynamic forces, and atherogenesisa, Ann Ny Acad Sci, 2000, 902(1): 230-240, DOI: 10.1111/j.1749-6632.2000.tb06318.x.
  • [8] Kadoglou N. P. E., Iliadis F., Liapis C. D., Exercise and carotid atherosclerosis, European Journal of Vascular and Endovascular Surgery, 2008, 35(3):264-272, DOI:10.1016/j.ejvs.2007.08.022.
  • [9] Kozàkovà M., Palombo C., Morizzo C., Nolan J. J., Konrad T., Balkau B., RISC Investigators, Effect of sedentary behaviour and vigorous physical activity on segment-specific carotid wall thickness and its progression in a healthy population, Eur Heart J, 2010, 31(12):1511-1519.
  • [10] Krause N., Lynch J. W., Kaplan G. A., Cohen R. D., Salonen R., Salonen J. T., Standing at work and progression of carotid atherosclerosis, Scandinavian journal of work, environment & health, 2000, 227-236.
  • [11] Laufs U., Wassmann S., Czech T., Münzel T., Eisenhauer M., Böhm M., Nickenig G., Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis, Arteriosclerosis, thrombosis, and vascular biology, 2005, 25(4):809-81, DOI: 10.1161/01.ATV.0000158311.24443.af
  • [12] Lee B. K., Computational fluid dynamics in cardiovascular disease, Korean circulation journal, 2011, 41(8):423-430. DOI: 10.4070/kcj.2011.41.8.423.
  • [13] Lee S. W., Antiga L., Spence J. D., Steinman D. A., Geometry of the carotid bifurcation predicts its exposure to disturbed flow, Stroke, 2008, 39(8):2341-2347.
  • [14] Lucas A. J., Atherosclerosis, Nature, 2000, 407:233-41.
  • [15] Malek A. M., Alper S. L., Izumo S., Hemodynamic shear stress and its role in atherosclerosis, Jama, 1999, 282(21):2035-2042, DOI:10.1001/jama.282.21.2035.
  • [16] Markl M., Wegent F., Zech T., Bauer S., Strecker C., …. Harloff A., In Vivo Wall Shear Stress Distribution in the Carotid Artery -Effect of Bifurcation Geometry, Internal Carotid Artery Stenosis, and Recanalization Therapy, Circ Cardiovasc Imaging, 2010, 3:647-655, DOI: 10.1161/CIRCIMAGING.110.958504
  • [17] Morbiducci U., Gallo D., Massai D., Consolo F., Ponzini R., Antiga L., ... Redaelli A., Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow, Journal of biomechanical engineering, 2010, 132(9):091005, DOI:10.1115/1.4001886.
  • [18] Newcomer S. C., Sauder C. L., Kuipers N. T., Laughlin M. H., Ray C. A., Effects of posture on shear rates in human brachial and superficial femoral arteries, Am J Physiol-Heart C, 2008 294(4):H1833-H1839, DOI: 10.1152/ajpheart.01108.2007.
  • [19] Osorio A. F., Osorio R., Ceballos A., Tran R., Clark W., Divo E.A., DeCampli W. M., Computational fluid dynamics analysis of surgical adjustment of left ventricular assist device implantation to minimise stroke risk, Comput Method Biomec, 2013, 16(6):622-638.
  • [20] Razavi A., Shirani E., Sadeghi M. R., Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models, J Biomech, 2011, 44(11)2021-2030.
  • [21] Reymond P., Perren F., Lazeyras F., Stergiopulos,N., Patient-specific mean pressure drop in the systemic arterial tree, a comparison between 1-D and 3-D models, J Biomech, 2012, 45(15):2499-2505. DOI: 10.1016/j.jbiomech.2012.07.020.
  • [22] Shibeshi S. S., Collins W. E., The rheology of blood flow in a branched arterial system, Applied rheology (Lappersdorf, Germany: Online), 2005, 15(6):398.
  • [23] Tu J., Yeoh G.H., Liu C., Computational fluid dynamics: a practical approach, Butterworth-Heinemann, 2012.
  • [24] Wootton D.M., Ku D.N., Fluid mechanics of vascular systems, diseases, and thrombosis, Annu Rev Biomed Eng, 1999, 1(1):299-329, DOI: 10.1146/annurev.bioeng.1.1.299.
  • [25] Yilmaz F., Gundogdu M.Y., A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions, Korea-Aust Rheol J, 2008, 20(4):197-211.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81980dd6-889a-4234-971a-55f1f44a53f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.