PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Identification of analytical dependencies of the operational characteristics of the workpiece clamping mechanisms with the rotary movement of the input link

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research is devoted to the problem of determining the efficiency of the workpiece fixing mechanism operation. Improving characteristics of workpiece fixing is one of the required conditions to increase the cutting modes, which may help to enhance the machining productivity. The study investigates the main characteristics and general features of a new structure of clamping mechanisms with electromechanical actuators for fixation of rotation bodies. The main advantages of using electromechanical clamping actuators with self-braking gear are presented. Two simplified dynamical models for the description of different stages of the clamping process are developed. The calculation scheme was formulated to find out how the mass-geometric parameters of mechanism elements should influence the main characteristics of the clamping mechanisms of this type.
Rocznik
Strony
47--52
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Faculty of Technology, Department of Applied mechanics, Lutsk National Technical University, Lvivska Str 75, 43018 Lutsk, Ukraine
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
Bibliografia
  • 1. Alquraan T., Kuznetsov Yu., Tsvyd T. (2016) High-speed clamping Mechanism of the CNC lathe with compensation of centrifugal forces, Procedia engineering, 150, 689-695.
  • 2. An J., Jiamin C., Wenguo Y. (2019), Measurement of spindle radial error based on target trajectory tracking, Measurement, 146,179-185.
  • 3. Bediz B., Gozen B.A., Korkmaz E., Ozdoganlar O. B. (2014), Dynamics of ultra-high-speed (UHS) spindles used for micromachining, International Journal of Machine Tools and Manufacture, 87, 27-38.
  • 4. Budniak Z. (2015), Modelling and numerical analysis of assembly system, Acta mechanica et Automatica, 9(3), 145-150.
  • 5. Chao Xu, Jianfu Z., Pingfa F. (2014), Characteristics of stiffness and contact stress distribution of a spindle-holder taper joint under clamping and centrifugal forces, International Journal of Machine Tools & Manufacture, 82-83, 21-28.
  • 6. Dogariu C., Bardac D. (2014), Prediction of the structural dynamic behavior of high speed turning machine spindles, Applied Mechanics and Materials, 555, 567-574.
  • 7. Estrems M., Arizmendi M., Cumbicus W.E., López A. (2015), Measurement of clamping forces in a 3 jaw chuck through an instrumented aluminium ring, Procedia Engineering, 132, 456-463.
  • 8. Fedorynenko D., Sapon S., Boyko S. (2016), Accuracy of spindle units with hydrostatic bearings, Acta Mechanica et Automatica, 10(2), 117-124
  • 9. Fedorynenko D., Sapon S., Boyko S., Urlina A. (2017), Increasing of energy efficiency of spindles with fluid bearings, Acta Mechanica et Automatica, 11(2), 204-209.
  • 10. Foremny E., Schenck C., Kuhfuß B. (2016), Dynamic Behavior of an Ultra Precision Spindle used in Machining of Optical Components, Procedia CIRP, 46, 452-455.
  • 11. Grama S.N., Mathur A., Badhe A.N. (2018), A model-based cooling strategy for motorized spindle to reduce thermal errors, International Journal of Machine Tools and Manufacture, 132, 3-16.
  • 12. Grossi N., Scippa A., Montevecchi F. (2016), A novel experimental-numerical approach to modeling machine tool dynamics for chatter stability prediction, Journal of advanced mechanical design systems and manufacturing, 10(2), #15-00547.
  • 13. Harris P., Linke B., Spence S. (2015), An Energy Analysis of Electric and Pneumatic Ultra-high Speed Machine Tool Spindles, Procedia CIRP, 29, 239-244.
  • 14. Jia Q., Li B., Wei Y., Chen Y., Yuan X. (2016), Axiomatic Design Method for the Hydrostatic Spindle with Multisource Coupled Information, Procedia CIRP, 53, 252-260.
  • 15. Kono D., Mizuno S., Muraki T., Nakaminami M. (2019), A machine tool motorized spindle with hybrid structure of steel and carbon fiber composite, CIRP Annals, 68(1), 389-392.
  • 16. Li, W.; Zhou, Z. X.; Xiao, H. (2015), Design and evaluation of a high-speed and precision microspindle, International journal of advanced manufacturing technology, 78(5), 997-1004.
  • 17. Liu T., Gao W., Zhang D., Tian Y. (2017), Analytical modeling for thermal errors of motorized spindle unit, International Journal of Machine Tools and Manufacture, 112, 53-70.
  • 18. Longfei Z., Jun Z., Chao Z. (2019), A new method for field dynamic balancing of rigid motorized spindles based on real-time position data of CNC machine tools, International journal of advanced manufacturing technology, 102 (5-8), special edition, 1181-1191.
  • 19. Matsubara A., Tsujimoto S., Kono D. (2015), Evaluation of dynamic stiffness of machine tool spindle by non-contact excitation tests, CIRP Annals, 1.V. 64(1), 365-368.
  • 20. Mori K., Bergmann B., Kono D., Denkena B., Matsubara A. (2019), Energy efficiency improvement of machine tool spindle cooling system with on–off control, CIRP Journal of Manufacturing Science and Technology, 25, 14-21.
  • 21. Postel M., Aslan D., Wegener K., Altintas Y. (2019), Monitoring of vibrations and cutting forces with spindle mounted vibration sensors, CIRP Annals, 68(1), 413-416.
  • 22. Prydalnyi B. (2020), Characteristics of electromechanical clamping mechanism with asynchronous electric motor, International Conference Mechatronic Systems and Materials (MSM), 1-5.
  • 23. Rabréau C., Ritou M., Le Loch S., Furet B. (2017), Investigation of the Evolution of Modal Behavior of HSM Spindle at High Speed, Procedia CIRP, 58, 405-410.
  • 24. Ritou M., Rabréau C., Le Loch S., Furet B., Dumur D. (2018), Influence of spindle condition on the dynamic behavior, CIRP Annals, 67(1), 419-422.
  • 25. Shaoke W., Jun H., Fei D. (2019), Modelling and characteristic investigation of spindle-holder assembly under clamping and centrifugal forces, Journal of mechanical science and technology, 33(5), 2397-2405.
  • 26. Thorenz B., Westermann H.-H., Kafara M., Nützel M., Steinhilper R. (2018), Evaluation of the influence of different clamping chuck types on energy consumption, tool wear and surface qualities in milling operations, Procedia Manufacturing, 21, 575-582.
  • 27. Wang H.J. (2013), Study of dynamics characteristics for precision motor spindle system, Advanced materials research, 819, 389-392.
  • 28. Xu C., Zhang J., Feng P., Yu D., Wu Z. (2014), Characteristics of stiffness and contact stress distribution of a spindle–holder taper joint under clamping and centrifugal forces, International Journal of Machine Tools and Manufacture, 82–83, 21-28.
  • 29. Yadav M.H., Mohite S.S. (2018), Controlling deformations of thinwalled Al 6061-T6 components by adaptive clamping, Procedia Manufacturing, 20, 509-516.
  • 30. Yang Y., Zhang W.H., Ma Y.C., Wan M. (2015), Generalized method for the analysis of bending, torsional and axial receptances of tool– holder–spindle assembly, International Journal of Machine Tools and Manufacture, 99, 48-67.
  • 31. Yuan S.M. (2014), The analysis of static and dynamic characteristics of motorized high-speed spindle based on sensitivity analysis of fem model, Applied mechanics and materials, 43, 376-381.
  • 32. Zabielski R., Trochimczuk R. (2011), Wybrane problemy projektowania wysokoobrotowych elektrowrzecion frezarskich o niestandardowym łożyskowaniu, Acta Mechanica et Automatica, 5(1), 131-136.
  • 33. Zhang S., Yu J., To S., Xiong Z. (2018), A theoretical and experimental study of spindle imbalance induced forced vibration and its effect on surface generation in diamond turning, International Journal of Machine Tools and Manufacture, 133, 61-71.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8193ec88-7cd6-47ae-85b8-b096c57f090e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.