PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fuzzy Rough Decision Trees

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
How to evaluate features and select nodes is one of the key issues in constructing decision trees. In this work fuzzy rough set theory is employed to design an index for evaluating the quality of fuzzy features or numerical attributes. A fuzzy rough decision tree algorithm, which can be used to address classification problems described with symbolic, real-valued or fuzzy features, is developed. As node selection, split generation and stopping criterion are three main factors in constructing a decision tree, we design different techniques to determine splits with different kinds of features. The proposed algorithm can directly generate a classification tree without discretization or fuzzification of continuous attributes. Some numerical experiments are conducted and the comparative results show that the proposed algorithm is effective compared with some popular algorithms.
Wydawca
Rocznik
Strony
381--399
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • School of Computer Science and Technology, Tianjin University, Tianjin 300072, P.R. China
autor
  • School of Computer Science and Technology,Tianjin University, Tianjin 300072, P.R. China
autor
  • School of Computer Science and Technology, Tianjin University, Tianjin 300072, P.R. China
autor
  • School of Computer Science and Technology, Tianjin University, Tianjin 300072, P.R. China
Bibliografia
  • [1] S. An, Q. H. Hu, D. R. Yu, J. F. Liu, Soft minimum enclosing ball-based robust fuzzy rough sets, Fundamenta Informaticae, 114, 2012, 1-14.
  • [2] R. B. Bhatt, M. Gopal, FRCT: fuzzy-rough classification trees, Pattern Analysis and Applications, 11, 2008, 73-88.
  • [3] C. L. Blake, C. J. Merz, UCI repository of machine learning databases, 1998, Available: http://www.ics.uci.edu/ mlearn/MLRepository.html
  • [4] P. Bonissone, J. Cadenas, M. C. Garrido, R. A. D. Valladares, A fuzzy random forest, International Journal of Approximate Reasoning, 51, 2010, 729-747.
  • [5] L. Breiman, J. Friedman, C. Stone, R. Olshen, Classification and regression trees. Boca Raton, FL: Chapman and Hall/CRC, 1984.
  • [6] K. J. Cios, L. M. Sztandera, Continuous ID3 algorithm with fuzzy entropy measures, Proceeding on IEEE International Conference on Fuzzy Systems, San Diego, CA,1992, pp.469-476.
  • [7] C. Cornelis, M. D. Cock, A. M. Radzikowska, Vaguely quantified rough sets, in: Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, Lecture Notes in Artificial Intelligence, 4482, 2007, 87-94.
  • [8] C. Cornelis, R. Jensen, G. H. Martin, D. Slezak, Attribute selection with fuzzy decision reducts, Information Sciences, 180, 2010, 209-224.
  • [9] T. M. Cover, P. E. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, 13,1967, 21-27.
  • [10] B. V. Dasarathy, Nearest neighbor NN norms: NN pattern classification techniques, IEEE Computer Society,1990, 1-30.
  • [11] T. G. Dietterich, Approximate statistical tests for comparing supervised classification learning algorithms, Neural Computation, 10, 1998, 1895-1923.
  • [12] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, General Systems, 17, 1990, 191-209.
  • [13] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Machine Learning, 36, 2006, 3-42.
  • [14] Q. H. Hu, S. An, D. R. Yu, Soft fuzzy rough sets for robust feature evaluation and selection, Information Science, 180, 2010, 4384-4400.
  • [15] Q. H. Hu, S. An, D. R. Yu, Robust fuzzy rough classifiers, Fuzzy sets and system, 183, 2011, 26-43.
  • [16] Q. H. Hu, L. Zhang, S. An, D. Zhang, D. R. Yu, On robust fuzzy rough set models, IEEE Transactions on Fuzzy Systems, 20, 2012, 636-651.
  • [17] E. Hullermeier, S. Vanderlooy, Why fuzzy decision trees are good rankers, IEEE Transactions on Fuzzy Systems, 17, 2009, 1233-1244.
  • [18] R. Jensen, Q. Shen, Fuzzy-rough attribute reduction with application to web categorization, Fuzzy Sets and Systems, 141, 2004, 469-485.
  • [19] R. Jensen, Q. Shen, Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches, IEEE Transactions on Knowledge and Data Engineering, 16, 2004, 1457-1471.
  • [20] R. Jensen, Q. Shen, Fuzzy-rough feature significance for fuzzy decision trees. Proceedings of the 2005 UKWorkshop on Computational Intelligence, 2005, 89-96.
  • [21] G. J. Klir, B. Yuan, Fuzzy logic: Theory and applications, Upper Saddle River, NJ: Prentice-Hall, 1995.
  • [22] J. S. Mi, W. X. Zhang, An axiomatic characterization of a fuzzy generalization of rough sets, Information Sciences, 160, 2004, 235-249.
  • [23] A. Mieszkowicz-Rolka, L. Rolka, Variable precision fuzzy rough sets, in: F. P. James, A. Skowron (Eds.),Transactions on Rough Sets I, 3100, 2004, 144-160.
  • [24] N. N. Morsi, M. M. Yakout, Axiomatics for fuzzy rough sets, Fuzzy Sets and Systems, 100, 1998, 327-342.
  • [25] H. S. Nguyen, Approximate boolean reasoning: foundations and Applications in Data Mining. Transactionson Rough Sets V, 4100, 334-506, 2006.
  • [26] C. Olaru, L. Wehenkel, A complete fuzzy decision tree technique, Fuzzy Sets and Systems, 138, 2003, 221-254.
  • [27] J. R. Quinlan, Induction of decision trees, Machine Learning, 1, 1986, 81-106.
  • [28] J. R. Quinlan, C4.5: Programs for machine learning. San Francisco, CA: Morgan Kaufmann, 1993.
  • [29] A. M. Radzikowska, E. E. Kerre, A comparative study of fuzzy rough sets, Fuzzy Sets and Systems, 126,2002, 137-155.
  • [30] S. R. Safavian, D. Landgrebe, A survey of decision tree classifier methodology, IEEE Transactions on System Man Cybernet, 21, 1991, 660-674.
  • [31] A. Suarez, J. F. Lutsko, Globally optimal fuzzy decision trees for classification and regression, IEEE Transactionson Pattern Analysis and Machine Intelligence, 21, 1999, 1297-1311.
  • [32] S. Trabelsi, Z. Elouedi, P. Lingras, Classification systems based on rough sets under the belief function framework, International Journal of Approximate Reasoning, 52, 2011, 1409-1432.
  • [33] E. C. C. Tsang, D. G. Chen, D. S. Yeung, Attributes reduction using fuzzy rough sets, IEEE Transactions on Fuzzy Systems, 16, 2008, 1130-1141.
  • [34] X.-Z. Wang, D.S. Yeung, E.C.C. Tsang, A comparative study on heuristic algorithms for generating fuzzy decision trees, IEEE Transactions on Systems,Man, and CyberneticsłPart B: Cybernetics, 31, 2001, 215-226.
  • [35] X.-Z. Wang, B. Chen, G. L. Qian, F. Ye, On the optimization of fuzzy decision trees, Fuzzy Sets and Systems,112, 2000, 117-125.
  • [36] X.-Z. Wang, J. H. Zhai, S. X. Lu, Induction of multiple fuzzy decision trees based on rough set technique, Information Sciences, 178, 2008, 3188-3202.
  • [37] Weber, Fuzzy-ID3: a class of methods for automatic knowledge acquisition, in: 2nd International Conference on Fuzzy Logic and Neural Networks, Iizuka, Japan, 1992, 265-268.
  • [38] H. Y. Wu, Y. Y. Wu, J. P. Luo, An interval type2 fuzzy rough set model for attribute reduction, IEEE Transactionson Fuzzy Systems, 17, 2009, 301-315.
  • [39] W.-Z. Wu, J.-S. Mi, W.-X. Zhang, Generalized fuzzy rough sets, Information Sciences 151(2003), 263-282.
  • [40] W.-Z. Wu, J.-S. Mi, W.-X. Zhang, Constructive and axiomatic approaches of fuzzy approximation operators, Information Sciences, 159, 2004, 233-254.
  • [41] X. D. Wu, X. Q. Zhu, Mining with noise knowledge: Error-aware data mining, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38, 2008, 917-931.
  • [42] H. Xiong, G. Pandey, M. Steinbach, V. Kumar, Enhancing data analysis with noise removal, IEEE Transactionson Knowledge and Data Engineering, 18, 2006, 304-319.
  • [43] Y. Y. Yao, Y. Zhao, Attribute reduction in decision-theoretic rough set models, Information Sciences, 178, 2008, 3356-3373.
  • [44] Y. Yuan, M. J. Shaw, Induction of fuzzy decision trees, Fuzzy Sets and Systems, 69, 1995, 125-139.
  • [45] D.S. Yueng, D.G. Chen, E.C.C. Tsang, On the generalization of fuzzy rough sets, IEEE Transactions on Fuzzy Systems, 13, 2005, 343-361.
  • [46] D. S. Yeung, X. Z. Wang, E.C.C. Tsang, Learning weighted fuzzy rules from examples with mixed attributes by fuzzy decision trees, IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, 1999, 349-354.
  • [47] S. Y. Zhao, E. C. C. Tsang, D. G. Chen, The model of fuzzy variable precision rough sets, IEEE Transactionson Fuzzy Systems, 17, 2009, 451-467.
  • [48] X. Q. Zhu, X. D. Wu, Y. Yang, Error detection and impact-sensitive instance ranking in noisy datasets, in: Aaai Conference on Artificial Intelligence archive Proceedings of the 19th national conference on Artificial intelligence, 2004, 378-383.
  • [49] X. Q. Zhu, X. D. Wu, Class noise handling for effective cost-sensitive learning by cost-guided iterative classification filtering, IEEE Transactions on Knowledge and Data Engineering, 18, 2006, 1435-1440
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8192b81d-dc01-4fb9-8bc7-93305202664d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.