PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perspektywy rozwoju i wykorzystania badań in situ w dokumentowaniu geotechnicznym

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Prospects for the development and use of in situ research in geotechnical documentation
Języki publikacji
PL
Abstrakty
PL
Ogromny potencjał interpretacyjny nowoczesnych technik badań in situ, do których zaliczają się: sondowania statyczne, badania dylatometryczne i geofizyczne, dobrze uzasadnia powszechnie akceptowaną opinię, sformułowaną przez P.K. Robertsona, że za pomocą tych badań można rozwiązać około 80% zadań geotechnicznych. Ta opinia prowadzi do prawie powszechnie stosowanej konkluzji, że wiercenia badawcze i badania laboratoryjne powinny stanowić wprawdzie niezbędne, ale uzupełniające i referencyjne badania dla badań in situ.
EN
The enormous interpretative potential of modern in situ research techniques, including static probes, dilatometric and geophysical investigations, justifies the widely accepted opinion, formulated by P. K. Robertson that about 80% of geotechnical tasks could be solved with this research. This opinion leads to almost universally accepted conclusions that drilling research and laboratory testing should be obligatory but at the same time complementary to the in situ research.
Rocznik
Tom
Strony
38--47
Opis fizyczny
Bibliogr. 46 poz., il., rys., wykr.
Twórcy
autor
  • Uniwersytet Przyrodniczy w Poznaniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
Bibliografia
  • [1] Cichy W.: Dokumentacje geotechniczne i geologiczno-inżynierskie w świetle obowiązujących przepisów prawa, 2015. Inżynieria Morska i Geotechnika nr 5/2015, s. 721–726.
  • [2] Lunne T., Robertson P.K., Powell J.J.M.: Cone Penetration Testing in Geotechnical Practice. Blackie Academic EF Spon/Routledge Publishers. New York, 1997.
  • [3] Mayne P. W.: In-situ test calibration for evaluating soil parameters. In-situ testing. Singapore Workshop, 2006.
  • [4] Schnaid F.: In-situ testing in geomechanics: The main Tests. Taylor & Francis, 2009.
  • [5] Młynarek Z., Wierzbicki J.: Niepewności pomiarowe w badaniach terenowych i laboratoryjnych [w:] Badania i analizy wybranych zagadnień z budownictwa, Joanna Bzówka (red.). Wyd. Politechniki Śląskiej, Gliwice, 2011, s. 15–37.
  • [6] Marchetti S., Craps D. K.: Flat Dilatometer Manual. Internal Report of G.P.E. Inc, 1981.
  • [7] Schnaid F., Bedin J., Costa Filho L. M.: Drainage characterization of tailings from in situtest, Proc. 2nd Int Symp. on Cone Penetration Testing, Huntington Beach. Ca, 2010.
  • [8] Dejong J. T., Jaeger R.A., Boulanger R.W., Randolph M., F., Wahl D. A. J.: Variable penetration rate cone testing for characterization of intermediate soils. Proc. of 4th Int. Conference Geotechnical Site Characterization. Recife, Frances Taylor, 2013, s. 25–42.
  • [9] Rabarijoelly S.: New chart for classification of organic soils from dilatometer tests (DMT) results. Annals of Warsaw University of Life Sciences – SGGW. Land Reclamation. Volume 45, Issue 2, 2013, s. 159–168.
  • [10] Młynarek Z., Wierzbicki J., Gogolik S., Bogucki M.: Shear strength and deformation parameters of peat and gyttja from CPTU, SDMT and VT tests. [w:] CPTU and DMT in soft clays and organic soils, Młynarek Z., Wierzbicki J. (red.). Exemplum. Poznań, 2014, s. 193–210.
  • [11] Młynarek Z., Tschuschke W., Wierzbicki J.: Klasyfikacja gruntów podłoża budowlanego metodą statycznego sondowania. Monografia 11 Krajowej Konferencji Mechaniki Gruntów i Fundamentowania. Gdańsk 1997, s. 119–126.
  • [12] Robertson P. K.: Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 1990, s. 151–158.
  • [13] Młynarek Z., Sanglerat G.: Relationship between shear parameters and cone resistance for some cohesive soils. Proc. of International Symposium In-situ Tests. Paris 1983, vol. 2.
  • [14] Robertson P. K.: Interpretation of Cone Penetration Testing – a unified approach. Canadian Geotechnical Journal, 49 (11), 2009, s. 1337–1355.
  • [15] Zhang Z., Tumay M. T.: Statistical to Fuzzy Approach toward CPT Soil Classification, ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 3, 1999, s. 179–186.
  • [16] Tumay M. T., Karasulu Y. H., Młynarek Z., Wierzbicki J.: Effectiveness of CPT-based classification charts for identification of subsoil stratigraphy [w:] Proc. of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, A. Anagnostopoulos i in. (red.). IOS Press, 2011, 91–98.
  • [17] Massod T., Mitchell J. K.: Estimation of in situ lateral stresses in soils by cone penetration test. Journal of Geotechnical Engineering, ASCE, 119 (10), 1993, s. 1624–1639.
  • [18] Wierzbicki J.: Ocena prekonsolidacji podłoża metodami in situ w aspekcie jego genezy. Rozprawy Naukowe nr 410. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu. 2010.
  • [19] Harder H., Von Bloh G.: Determination of representative CPT-parameters. Proc. of International Conference: Penetration testing in the UK. Thomas Telford, London, 1988, s. 237–240.
  • [20] Hegazy, Y. A., Mayne, P. W.: Objective Site Characterization Using Clustering of Piezocone Data. ASCE Journal of Geotechnical & Geoenvironmental Engineering 128 (12), 2002, s. 986–996.
  • [21] Facciorusso J., Uzielli M.: Stratigraphic profiling by cluster analysis and fuzzy soil classification from mechanical cone penetration tests. Proc. of ISC-2 on Geotechnical and Geophysical Site Characterization. Porto, Millpress, Rotterdam, 2004, s. 905–912.
  • [22] Młynarek Z., Wierzbicki J., Wołyński W.: Use of Interpolation Methods for Geotechnical Profiling. Studia Geotechnica et Mechanica, Vol. XXVII, No. 3–4, Wrocław, 2005, 5–13.
  • [23] Godlewski T., Szczepański T.: Metody określania sztywności gruntów w badaniach geotechnicznych. Seria Instrukcje, wytyczne,
  • poradniki. Instytut Techniki Budowlanej w Warszawie, 2015.
  • [24] Long M.: Developments in the use of geophysics in geotechnical engineering in soft ground [w:] Geotechnical Engineering for Infrastructure and Development: XVI European Conference on Soil Mechanics and Geotechnical Engineering, Winter M. G., Smith D. M., Eldred P. J. L. (red), ICE Publishing, 2015, s. 129–150.
  • [25] Long M., Donohue S.: In situ shear wave velocity from multichannel analysis of surface waves (MASW) tests at eight Norwegian research sites. Canadian Geotechnical Journal, 44 (5), 2007, s. 533–544.
  • [26] Kelly R. B., Whieley R. J.: Geotechnical model development for a very soft estuarine clay with MASW geophysics, in situ and laboratory testing [w:] R. Q. Coutinho and P. W. Mayne (red.), Proceedings 4th International Conference on Geotechnical and Geophysical Site Characterisation (ISC’4) Taylor and Francis Group, London, Recife, Brazil, 2013, s.1579–1584.
  • [27] Long M., Donohue S., O’connor P.: Rapid, cost effective and accurate determination of in situ stiffness using MASW at Bothkennar. Ground Engineering, November, 2008, s. 43–46.
  • [28] Foti S.: Combined use of geophysical methods in site characterization. Proc. of 4th Int. Conference Geotechnical Site Characterization. Recife, Frances Taylor, 2013, s. 43–61.
  • [29] Kamuhangire R., Plunket T., Rüegg C.: Using Multi-Channel Analysis of Surface Waves and Cone Penetrometer Tests to delineate an in-filled palaeochannel during routine investigations – A Christchurch Earthquake Case Study. Proc. of 5th Int. Conference Geotechnical Site Characterization. Gold Coast. Australia, 2016.
  • [30] Lunt I. A., Hubbard S. S., Rubin Y.: Soil moisture content estimation using ground-penetrating radar reflection data. Journal of Hydrology, 307. 2005, s. 254–269.
  • [31] Saarenketo T., Hietala K., Salmi T.: GPR applications in geotechnical investigations of peat for road survey purposes, Geological Survey of Finland, Special Paper 16, 1992.
  • [32] Trafford A.: Mapping thickness of raised peat bog deposits using GRP, Proceedings EAGE Near Surface 2009, 15th Annual Meeting of Environmental and Engineering Geophysics. EAGE, Dublin.
  • [33] Młynarek Z.: Quality of in-situ and laboratory test contribution to risk management. Proc. of 14th Danube European Engineering. Bratislava, Slovakia, 2010.
  • [34] Wierzbicki J., Młynarek Z.: Reprezentatywna wartość parametru geotechnicznego z badań in situ i jej wykorzystanie do konstrukcji modeli geotechnicznych. Inżynieria Morska i Geotechnika, Tom: 36, Zeszyt: 3, 2015, s. 166–176.
  • [35] Młynarek Z., Wierzbicki J., Wołyński W.: An approach to 3D subsoil model based on CPTU results [w:] Geotechnical Engineering in Urban Environments, V. Cuellar et. al (red.) Vol. 3. Millpress Rotterdam, 2007, s. 1721–1726.
  • [36] Calinski T., Harabasz. S.: A dendrite method for cluster analysis. Communication in statistics, vol. 3, 1974, 1–27.
  • [37] Młynarek Z., Gogolik S., Gryczmański M., Uliniarz R.: Settlement analysis of a cylindrical tank based on CPTU and SDMT results. Proc. of 4th Int. Conference Geotechnical Site Characterization. Recife, Frances Taylor, 2013, s. 1585–1590.
  • [38] Wierzbicki J.: Determination of homogenous geotechnical layers in strongly laminated soil by means of CPTU and cluster analysis [w]: Geotechnical Engineering in Urban Environments, V. Cuellar et. al (red.). Vol. 5. Millpress Rotterdam, 2007, s. 575–579.
  • [39] Młynarek Z., Wierzbicki J., Stefaniak K.: Deformation characteristics of over consolidated subsoil from CPTU i SDMT tests. Proc. of 4th Int. Conference Geotechnical Site Characterization. Recife, Frances Taylor, 2013, s. 1189–1193.
  • [40] Młynarek Z., Lunne T.: Statistical estimation of homogeneity of a North Sea over consolidated clay. Proc. of 5th International Conference on Application of Statistics and Probability in Soil and Structural Engineering. Vancouver, 1987.
  • [41] Młynarek Z., Wierzbicki J., Wołyński W.: Use of CPTU for the assessment of the stiffness model of subsoil of subsoil. Proc. of 5th Int. Conference Geotechnical Site Characterization. Gold Coast, Australia, 2016.
  • [42] Mayne P. W.: Stress-strain-strength – flow parameters from enhanced in situ tests. Proc. of International Conference on In Situ Measurements of Soil Properties and Case Histories. Bali, 2001, s. 27–47.
  • [43] Młynarek Z.: Czynniki wpływające na opór stożka podczas statycznego sondowania gruntów spoistych. Roczniki AR, nr 283. Poznań, 1978, s. 1–68.
  • [44] Karslud K., Lunne T., Kert A., Strandvik S.: CPTU correlations for clays. Proc. of 14th International Conference on Soil Mechanics and Geotechnical Engineering. Osaka 2005.
  • [45] Lechowicz Z., Szymański A.: Odkształcenia i stateczność nasypów na gruntach organicznych. Część 1 – Metodyka badań. Wydawnictwo SGGW, Warszawa, 2002.
  • [46] Młynarek Z., Wierzbicki J., Lunne T.: On the influence of overconsolidation effect on the compressibility assessment of subsoil by means of CPTU and DMT. Annals of Warsaw University of Life Sciences – SGGW, Land Reclamation No 48 (3). Warsaw, 2016, s. 189–200.
Uwagi
PL
2. Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8190c471-e4e8-48ef-b2e5-d797453b3035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.