PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrochemical oxidationand corrosion resistance of the Ti13Nb13Zr alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of oxidation andcorrosion tests carried out on titanium alloy Ti13Nb13Zr. The oxide film was prepared by electrochemical environment 2MH3PO4 for 30 min and 1h, at a constant voltage 40 V. The tests of corrosion resistance were performed by potentiostatic method in Ringer’s solution at different pH values : 7, 5 and 3. The change in an appearance of surface and the increase in corrosion resistance even in an acidic environment is an evidence that the electrochemical treatment of theTi13Nb13Zr alloy results in formation of dense, compact and likely amorphous oxide layer.
Rocznik
Strony
4--5
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Gdańsk, 11/12 Narutowicz str., 80-952 Gdańsk
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Gdańsk, 11/12 Narutowicz str., 80-952 Gdańsk
autor
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Gdańsk, 11/12 Narutowicz str., 80-952 Gdańsk
Bibliografia
  • [1] Zieliński A., S. Sobieszczyk. T. Seramak T., W. Serbiński, B. Świeczko-Żurek, A. Ossowska: Biocompatibility and bioactivity of load-bearing metallic implants. Advances in Materials Science 10, No. 4 (2010) 21-31.
  • [2] Zieliński A., Sobieszczyk S., Serbiński W., Seramak T., Ossowska A.: Materials design for the titanium scaffold based implant. Solid State Phenomena 183 (2012), 225-232.
  • [3] S. Sobieszczyk S.: The development of bioactive porous implants in titanium matrix. Publ. House Gdańsk Univ. Techn., Gdańsk 2013.
  • [4] Wierzchoń T. et al.,Surface engineering of biomaterials in the manufacture of titanium. Publ. House Warsaw Univ. Techn., Warsaw 2004.
  • [5] Kulesza E.: Evaluation of corrosion resistance of new titanium alloy obtained by powder metallurgy. Acta Mechanica et Automatic, vol. 5 no.1, oficyna wydawnicza Politechniki Białostockiej. Białystok 2011, 43-46.
  • [6] Tae-Yong Park et al.: Effects of surface morphology of titanium anodic-oxidized with sulphuric acid and phosphoric acid on osteogenesis, Clinical and Experimental Thesis (2005), 506-517.
  • [7] Yang,B. Uchida M., Kim H.M., Zhang X., Kokubo T.: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials, 25, 1003-1010 (2004).
  • [8] Krupa D., Baszkiewicz J., Kozubowski J.A., Mizera J., Barcz A., Sobczak J.W., Bilinski A., Rajchel B.: Corrosion resistance and bioactivity of titanium after surface treatment by three different methods: ion implantation, alkaline treatment, and anodic oxidation. Anal. Bioanal. Chem., 381, 617-625 (2005).
  • [9] Kurze P., Krysmann W., Schneider H.G:. Application fields of ANOF layers and composites. Cryst. Res. Technol., 21, 1603-1609 (1986).
  • [10] Ishizawa H.,Ogino M.: Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J. Biomed. Mater. Res., 29, 1071-1079 (1995).
  • [11] KasemB., Lausmaa J:. Biomaterial and implant surfaces: a surface science approach. Int. J. Oral. Maxillofac. Implants, 3, 247-259 (1988).
  • [12] Sul Y.T et al.: Characteristics of surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: oxide thickness, micropore configurations, surface roughness, crystalstructure, and chemical composition. Biomaterials, 23, 491-501 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-818f0ea0-1df0-4fe2-9af9-4033012c1da1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.