PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-criteria optimization of the turning parameters of Ti-6Al-4V titanium alloy using the Response Surface Methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper depicts an application of Response Surface Methodology (RSM) for predicting selected parameters in turning of Ti-6Al-4V titanium alloy using polycrystalline diamond tool. Response surface plots that are generated by the model helps in determining the optimum combination of input factors (cutting speed vc and feed rate f) for best possible surface roughness (Sa), cutting force (Fc)and temperature (T) for dry and cooling turning. The methodology of multi-criteria optimization was used to establish the interaction between input parameters and given responses.
Rocznik
Strony
668--676
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Rzeszow University of Technology, Department of Manufacturing and Production Engineering, Faculty of Mechanical Engineering and Aeronautics, al. Powst. Warszawy 8, 35-959 Rzeszow, Poland
  • Rzeszow University of Technology, Department of Manufacturing Techniques and Automation, Faculty of Mechanical Engineering and Aeronautics, al. Powst. Warszawy 8, 35-959 Rzeszow, Poland
  • Rzeszow University of Technology, Department of Manufacturing and Production Engineering, Faculty of Mechanical Engineering and Aeronautics, al. Powst. Warszawy 8, 35-959 Rzeszow, Poland
  • Rzeszow University of Technology, Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, al. Powst. Warszawy 12, 35-959 Rzeszów, Poland
  • Rzeszow University of Technology, Department of Manufacturing and Production Engineering, Faculty of Mechanical Engineering and Aeronautics, al. Powst. Warszawy 8, 35-959 Rzeszow, Poland
Bibliografia
  • 1. Abbas A.T., Sharma N., Anwar S., Luqman M., Tomaz I., Hegab H., Multi- response optimization in high-speed machining of Ti-6Al-4V using TOPSIS-fuzzy integrated approach. Materials 2020; 13 (5): 1104, https://doi.org/10.3390/ma13051104
  • 2. ASTM B367-22 -Standard Specification for Titanium and Titanium Alloy Castings; ASTM International: West Conshohocken, PA, USA, 2022.
  • 3. Ezugwu E.O., Bonney J., Da Silva R.B., Cakir O., Surface integrity of finished turned Ti6Al4V alloy with PCD tools using conventional and high pressure coolant supplies. International Journal of Machine Tools and Manufacture 2007; 47 (6): 884-891, https://doi.org/10.1016/j.ijmachtools.2006.08.005
  • 4. Fan W., Shen W., Zhang Q., Alfredo H.-S. Ang.: A new response surface method based on the adaptive bivariate cut-HDMR. Engineering Computations 2021; 38 (3): 1402-1431, https://doi.org/10.1108/EC-06-2020-0343
  • 5. Gao Y., Wu Y., Xiao J., Lu D.: An experimental research on the machinability of a high temperature titanium alloy BTi-6431S in turning process. Manufacturing Rev. 2018; 5 (12): 1-7, https://doi.org/10.1051/mfreview/2018011
  • 6. Grzesik W, Niesłony P, Habrat W. Investigation of the tribological performance of AlTiN coated cutting tools in the machining of Ti6Al4V titanium alloy in terms of demanded tool life.Eksploatacja I Niezawodnosc- Maintenance and Reliability 2019; 21 (1): 153–158, http://dx.doi.org/10.17531/ein.2019.1.17
  • 7. Guo Z., Xu Ch., Wang X., Feng P., Zhang M. Determination of tool tip steady-state temperature in dry turning processbased on artificial neural network. Journal of Manufacturing Processes 2022; 79: 600-613, https://doi.org/10.1016/j.jmapro.2022.05.021
  • 8. ISO 25178-2 2012 Geometrical Product Specifications (GPS)- Surface texture: areal- Part 2: Terms, definitions and surface texture parameters (Geneva: International Organization for Standardization)
  • 9. Kechagias J. D., Aslani K. E., Fountas N. A., Vaxevanidis N. M., Manolakos D. E.. A comparative investigation of Taguchi and full factorial design formachinability prediction in turning of a titanium alloy. Measurement 2020; 151 107213, https://doi.org/10.1016/j.measurement.2019.107213
  • 10. Khuri A.I.:A general overview of response surface methodology. Biometrics & Biostatistics International Journal 2017; 5(3): 87-93, DOI:10.15406/bbij.2017.05.00133
  • 11. Kowalczyk M., Then chip compression ratio analysis in the aspect of TI-6AL-4V alloy turning with elevated cutting speeds. Czasopismotechniczne – Mechanika, 2012; 109 (8): 55-69.
  • 12. Kuntoğlu M., Saglam H. ANOVA and fuzzy rule based evaluation and estimation of flank wear, temperature and acoustic emission in turning. CIRP Journal of Manufacturing Science and Technology 2021; 35 (3): 589-603,https://doi.org/10.1016/j.cirpj.2021.07.011
  • 13. Lampropoulos A. D., Markopoulos A. P., Manolakos D. E. Modeling of Ti6Al4V Alloy Orthogonal Cutting with Smooth Particle Hydrodynamics: A Parametric Analysis on Formulation and Particle Density. Metals 2019; 9 (4), https://doi.org/10.3390/met9040388
  • 14. Le Coz G., Fischer M., Piquard R., D’Acunto A., Laheurte P., Dudzinski D.: Micro cutting of Ti-6Al-4V parts produced by SLM Process. Procedia CIRP 2017; 58: 228 -232, https://doi.org/10.1016/j.procir.2017.03.326
  • 15. Mia M., Khan M. A., Dhar N. R. Study of surface roughness and cutting forces using ANN, RSM and ANOVA in turning of Ti-6Al-4V under cryogenic jets applied at flank and rake faces of coated WC tool. The International Journal of Advanced Manufacturing Technology 2017; 93: 975–991, DOI 10.1007/s00170-017-0566-9
  • 16. Mierzejewska Ż.,Kuptel P.,Sidun J. Analysis of the surface condition of removed bone implants. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18 (1): 65–72, http://dx.doi.org/10.17531/ein.2016.1.9.
  • 17. Myers, R. H., Montgomery, D. C. Response Surface Methodology: Product and Process Optimization Using Designed Experiments. 2nd Edition, John Wiley & Sons, New York. 2002.
  • 18. Narojczyk J., Moroz D., Siemiątkowski Z., Machining titanium alloy Ti-6Al-4V implanted carbide tools. Mechanik 2015; 3: 359-362, http://dx.doi.org/10.17814/mechanik.2015.3.152
  • 19. Ranganath M.S., Vipin H., Optimization of process parameters in turning operation using response surface methodology: a review. International Journal of Emerging Technology and Advanced Engineering 2014; 4 (10): 351-360.
  • 20. Sivam S. P. S. S., Rajendra Kumar S., Rajasekaran A., Karuppiah S. Prediction Model of Setting Input Parameters for Turning Operation TI-6AL-4V by Fuzzy Rule based Modeling. 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) 2017; 1343-1349, doi:10.1109/ICPCSI.2017.8391929
  • 21. Stachurski W., Midera S., D. Ostrowski. Influence of cutting parameters during turning process of aerospace industry alloy Ti-6Al-4V ELI (Grade 23) on cutting forces and surface roughness of the workpiece. Mechanik 2015; 8-9: 365-373, DOI: 10.17814/mechanik.2015.8-9.446
  • 22. Stachurski W, Ostrowski D.: Influence of cutting parameters during turning process of aerospace industry alloy Ti-6Al-4V ELI (Grade 23) on cutting forces and surface roughness of the workpiece. Mechanik2016; 8-9: 1032-1033, http://dx.doi.org/10.17814/mechanik.2016.8-9.233
  • 23. Sulaiman M.A. et al., Optimization of turning parameters for titanium alloy Ti-6Al-4V ELI using the response surface method (RSM). Journal of Advanced Manufacturing Technology(JAMT) 2013; 7 (2): 11-28.
  • 24. Suresh R. Nipanikar: Effect of Process Parameters during Turning of Ti6Al4V-ELI in Dry and MQL Environments. International Journal of Engineering Research & Technology (IJERT) 2020; 8 (14): 190-194.
  • 25. Surya M. S. Optimization of turning parameters while turning Ti-6Al-4V titanium alloy for surface roughness and material removal rate using response surface methodology. Materials Today: Proceedings 2022; 62: 3479-3484, https://doi.org/10.1016/j.matpr.2022.04.300
  • 26. Surya M.S., Vepa K.S., Karanam M., Optimization of machining parameters using ANOVA and grey relational analysis while turning Aluminium 7075. International Journal of Recent Technology and Engineering 2019; 8 (2): 5682–5686, DOI: 10.35940/ijrte.B3038.078219
  • 27. Tatar K., Sjoberg S., Andersson N.: Investigation of cutting conditions on tool life in shoulder milling of Ti6Al4V using PVD coated micrograin carbide insert based on design of experiments. Heliyon 2020; 6: 1-7, https://doi.org/10.1016/j.heliyon.2020.e04217
  • 28. Veiga C., Davim J. P., Loureiro A. Properties and applications of titanium alloys: A brief review. Reviews on Advanced Materials Science 2012; 32: 14-34.
  • 29. Xiaobo Z. Comparison of response surface method and Kriging method for approximation modeling 2017; 2nd International Conference on Power and Renewable Energy (ICPRE),DOI:10.1109/ICPRE.2017.8390502
  • 30. Ziberov M., Bacci da Silva M., Mark Jackson M., Wayne N.P. Hung. Effect of Cutting Fluid on Micromilling of Ti-6Al-4V Titanium Alloy. Procedia Manufacturing 2016; 5: 332-347, https://doi.org/10.1016/j.promfg.2016.08.029
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-818d5b4c-a556-4755-accf-022ae3b49553
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.