PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pharmaceuticals and personal care products in the environment with emphasis on horizontal transfer of antibiotic resistance genes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pharmaceuticals and personal care products (PPCPs) discharged into environment has several adverse impacts. PPCPs are widely utilised for veterinary as well as cosmetic and personal health reasons. These are members of the expanding class of substances known as Contaminants of Emerging Concern (CECs). Antibiotic resistance in the environment and garbage generated by PPCP endanger life. The World Health Organisation (WHO) now recognises antibiotic resistance as a significant global health problem due to the expected increase in mortality caused by it. In the past ten years, mounting data has led experts to believe that the environment has a significant impact on the development of resistance. For human diseases, the external environment serves as a source of resistance genes. It also serves as a major pathway for the spread of resistant bacteria among various habitats and human populations. Large-scale DNA sequencing methods are employed in this thesis to better comprehend the dangers posed by environmental antibiotic resistance. The quantification of the number is an important step in this process. Metagenomic measurement of the number of antibiotic resistance genes in various contexts is a crucial step in this process. However, it’s also crucial to put this data into a broader context by integrating things like taxonomic information, antibiotic concentrations, and the genomic locations of found resistance genes.
Rocznik
Strony
35--51
Opis fizyczny
Bibliogr. 78 poz., rys., tab., wykr.
Twórcy
  • Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
  • Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai 600006 Tamil Nadu, India
Bibliografia
  • [1] Fetting C. The European Green Deal. ESDN Report. 2020.
  • [2] Palmer E. Introduction: The Sustainable Development Goals Forum. J Glob Ethics. 2015;11:3-9. DOI: 10.1080/17449626.2015.1021091.
  • [3] Kroto HW, Zielińska M, Rajfur M, Wacławek M. The climate change crisis? Chem Didact Ecol Metrol. 2016;21:11-27. DOI: 10.1515/cdem-2016-0001.
  • [4] Crutzen PJ, Wacławek S. Atmospheric chemistry and climate in the Anthropocene. Chem Didact Ecol Metrol. 2014;19:9-28. DOI: 10.1515/cdem-2014-0001.
  • [5] Wu C-H, Tsai S-B, Liu W, Shao X-F, Sun R, Wacławek M. Eco-technology and eco-innovation for green sustainable growth. Ecol Chem Eng S. 2021;28:7-10. DOI: 10.2478/eces-2021-0001.
  • [6] McGrath L, Hynes S, McHale J. The air we breathe: Estimates of air pollution extended genuine savings for Europe. Rev Income Wealth. 2022;68:161-88. DOI: 10.1111/roiw.12512.
  • [7] Lee JW. Green finance and sustainable development goals: The case of China. J Asian Finance, Economics Business. 2020;7:577-86. DOI: 10.13106/jafeb.2020.vol7.no7.577.
  • [8] Shahid MK, Kashif A, Fuwad A, Choi Y. Current advances in treatment technologies for removal of emerging contaminants from water - A critical review. Coord Chem Rev. 2021;442:213993. DOI: 10.1016/J.CCR.2021.213993.
  • [9] Prasad MNV, Meththika V, Atya K, editors. Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology. Emerging Contaminants and Micro Pollutants. Elsevier; 2019. DOI: 10.1016/C2017-0-03544-9.
  • [10] Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19:56-66. DOI: 10.1016/S1473-3099(18)30605-4.
  • [11] Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399:629-55. DOI: 10.1016/S0140-6736(21)02724-0.
  • [12] Liu G, Qin M. Analysis of the distribution and antibiotic resistance of pathogens causing infections in hospitals from 2017 to 2019. Evid Based Complement Alternat Med. 2022;2022:3512582. DOI: 10.1155/2022/3512582.
  • [13] Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid transfer by conjugation in Gram-negative bacteria: From the cellular to the community level. Genes. 2020;11. DOI: 10.3390/genes11111239.
  • [14] Frazão N, Sousa A, Lässig M, Gordo I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc Natl Acad Sci USA. 2019;116:17906-15. DOI:10.1073/pnas.1906958116.
  • [15] Arnold BJ, Huang I-T, Hanage WP. Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol. 2022;20:206-18. DOI:10.1038/s41579-021-00650-4.
  • [16] Mahendra C, Christie KA, Osuna BA, Pinilla-Redondo R, Kleinstiver BP, Bondy-Denomy J. Broadspectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat Microbiol. 2020;5:620-9. DOI: 10.1038/s41564-020-0692-2.
  • [17] Tao S, Chen H, Li N, Liang W. The application of the CRISPR-Cas system in antibiotic resistance. Infect Drug Resist. 2022;15:4155-68. DOI: 10.2147/IDR.S370869.
  • [18] Saha U, Gondi R, Patil A, Saroj SD. CRISPR in modulating antibiotic resistance of ESKAPE pathogens. Mol Biotechnol. 2022. DOI: 10.1007/s12033-022-00543-8.
  • [19] Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-based vaccines for tuberculosis. Front Immunol. 2022;13:830497. DOI: 10.3389/fimmu.2022.830497.
  • [20] Birger R, Antillón M, Bilcke J, Dolecek C, Dougan G, Pollard AJ, et al. Estimating the effect of vaccination on antimicrobial-resistant typhoid fever in 73 countries supported by Gavi: a mathematical modelling study. Lancet Infect Dis. 2022;22: 679-91. DOI: 10.1016/S1473-3099(21)00627-7.
  • [21] Mayer RL, Verbeke R, Asselman C, Aernout I, Gul A, Eggermont D, et al. Immunopeptidomics-based design of mRNA vaccine formulations against Listeria monocytogenes. Nat Commun. 2022;13:6075. DOI: 10.1038/s41467-022-33721-y.
  • [22] Wang H, Chen D, Lu H. Anti-bacterial monoclonal antibodies: next generation therapy against superbugs. Appl Microbiol Biotechnol. 2022;106:3957-72. DOI: 10.1007/s00253-022-11989-w.
  • [23] Zhou SYD, Lin C, Yang K, Yang LY, Yang XR, Huang FY, et al. Discarded masks as hotspots of antibiotic resistance genes during COVID-19 pandemic. J Hazard Mater. 2022;425:127774. DOI: 10.1016/J.JHAZMAT.2021.127774.
  • [24] Miłobedzka A, Ferreira C, Vaz-Moreira I, Calderón-Franco D, Gorecki A, Purkrtova S, et al. Monitoring antibiotic resistance genes in wastewater environments: The challenges of filling a gap in the one-health cycle. J Hazard Mater. 2022;424: 127407. DOI: 10.1016/J.JHAZMAT.2021.127407.
  • [25] Onohuean H, Agwu E, Nwodo UU. Systematic review and meta-analysis of environmental Vibrio species - antibiotic resistance. Heliyon. 2022;8:e08845. DOI: 10.1016/j.heliyon.2022.e08845.
  • [26] Larsson DGJ, Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20:257-69. DOI: 10.1038/s41579-021-00649-x.
  • [27] Hutinel M, Larsson DGJ, Flach CF. Antibiotic resistance genes of emerging concern in municipal and hospital wastewater from a major Swedish city. Sci Total Environ. 2022;812:151433. DOI: 10.1016/J.SCITOTENV.2021.151433.
  • [28] Haenni M, Dagot C, Chesneau O, Bibbal D, Labanowski J, Vialette M, et al. Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. Environ Int. 2022;159:107047. DOI: 10.1016/J.ENVINT.2021.107047.
  • [29] Ma CY, Ihara M, Liu S, Sugie Y, Tanaka H. Tracking the source of antibiotic-resistant Escherichia coli in the aquatic environment in Shiga, Japan, through whole-genome sequencing. Environ Advances. 2022;8:100185. DOI: 10.1016/J.ENVADV.2022.100185.
  • [30] Chang S-M, Chen J-W, Tsai C-S, Ko W-C, Scaria J, Wang J-L. Antimicrobial-resistant Escherichia coli distribution and whole-genome analysis of sequence type 131 Escherichia coli isolates in public restrooms in Taiwan. Front Microbiol. 2022;13:864209. DOI: 10.3389/fmicb.2022.864209.
  • [31] Zou H, Han J, Zhao L, Wang D, Guan Y, Wu T, et al. The shared NDM-positive strains in the hospital and connecting aquatic environments. Sci Total Environ. 2022;160404. DOI: 10.1016/J.SCITOTENV.2022.160404.
  • [32] Malayil L, Ramachandran P, Chattopadhyay S, M. Allard S, Bui A, Butron J, et al. Variations in bacterial communities and antibiotic resistance genes across diverse recycled and surface water irrigation sources in the Mid-Atlantic and Southwest United States: A CONSERVE two-year field study. Environ Sci Technol. 2022;56:15019-33. DOI: 10.1021/acs.est.2c02281.
  • [33] al Salah DMM, Laffite A, Sivalingam P, Poté J. Occurrence of toxic metals and their selective pressure for antibiotic-resistant clinically relevant bacteria and antibiotic-resistant genes in river receiving systems under tropical conditions. Environ Sci Pollut Res Int. 2022;29:20530-41. DOI: 10.1007/s11356-021-17115-z.
  • [34] Victoria NS, Sree Devi Kumari T, Lazarus B. Assessment on impact of sewage in coastal pollution and distribution of fecal pathogenic bacteria with reference to antibiotic resistance in the coastal area of Cape Comorin, India. Mar Pollut Bull. 2022;175:113123. DOI: 10.1016/j.marpolbul.2021.113123.
  • [35] Keenum I, Liguori K, Calarco J, Davis BC, Milligan E, Harwood VJ, et al. A framework for standardized qPCR-targets and protocols for quantifying antibiotic resistance in surface water, recycled water and wastewater. Crit Rev Environ Sci Technol. 2022;52:4395-419. DOI: 10.1080/10643389.2021.2024739.
  • [36] Liguori K, Keenum I, Davis BC, Calarco J, Milligan E, Harwood VJ, et al. Antimicrobial resistance monitoring of water environments: A framework for standardized methods and quality control. Environ Sci Technol. 2022;56:9149-60. DOI: 10.1021/acs.est.1c08918.
  • [37] Hossain A, Habibullah-Al-Mamun M, Nagano I, Masunaga S, Kitazawa D, Matsuda H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environ Sci Pollut Res Int. 2022;29:11054-75. DOI: 10.1007/s11356-021-17825-4.
  • [38] Li W, Zhang G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environ Res. 2022;212:113267. DOI: 10.1016/J.ENVRES.2022.113267.
  • [39] Li Z, Junaid M, Chen G, Wang J. Interactions and associated resistance development mechanisms between microplastics, antibiotics and heavy metals in the aquaculture environment. Rev Aquac. 2022;14:1028-45. DOI: 10.1111/raq.12639.
  • [40] He LX, He LY, Gao FZ, Wu DL, Ye P, Cheng YX, et al. Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture. Sci Total Environ. 2022;808:152042. DOI: 10.1016/J.SCITOTENV.2021.152042.
  • [41] Wang Y, Ma L, He J, He Z, Wang M, Liu Z, et al. Environmental risk characteristics of bacterial antibiotic resistome in Antarctic krill. Ecotoxicol Environ Saf. 2022;232:113289. DOI: 10.1016/J.ECOENV.2022.113289.
  • [42] Zhou Y, Li WB, Kumar V, Necibi MC, Mu YJ, Shi CZ, et al. Synthetic organic antibiotics residues as emerging contaminants waste-to-resources processing for a circular economy in China: Challenges and perspective. Environ Res. 2022;211:113075. DOI: 10.1016/J.ENVRES.2022.113075.
  • [43] Mutuku C, Gazdag Z, Melegh S. Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J Microbiol Biotechnol. 2022;38:152. DOI: 10.1007/s11274-022-03334-0.
  • [44] Aziz A, Sengar A, Basheer F, Farooqi IH, Isa MH. Anaerobic digestion in the elimination of antibiotics and antibiotic-resistant genes from the environment - A comprehensive review. J Environ Chem Eng. 2022;10:106423. DOI: 10.1016/J.JECE.2021.106423.
  • [45] Haffiez N, Azizi SMM, Zakaria BS, Dhar BR. Propagation of antibiotic resistance genes during anaerobic digestion of thermally hydrolyzed sludge and their correlation with extracellular polymeric substances. Sci Rep. 2022;12:6749. DOI: 10.1038/s41598-022-10764-1.
  • [46] Zhang Z, Li X, Liu H, Zamyadi A, Guo W, Wen H, et al. Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A state-of-art review. Bioresour Technol. 2022;344:126197. DOI: 10.1016/J.BIORTECH.2021.126197.
  • [47] Deng Y, Zhang K, Zou J, Li X, Wang Z, Hu C. Electron shuttles enhanced the removal of antibiotics and antibiotic resistance genes in anaerobic systems: A review. Front Microbiol. 2022;13. DOI: 10.3389/fmicb.2022.1004589.
  • [48] Zhong J, Ahmed Y, Carvalho G, Wang Z, Wang L, Mueller JF, et al. Simultaneous removal of micropollutants, antibiotic resistant bacteria, and antibiotic resistance genes using graphitic carbon nitride under simulated solar irradiation. Chem Eng J. 2022;433:133839. DOI: 10.1016/J.CEJ.2021.133839.
  • [49] Fang J, Jin L, Meng Q, Shan S, Wang D, Lin D. Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via transformation. J Hazard Mater. 2022;423:127150. DOI: 10.1016/J.JHAZMAT.2021.127150.
  • [50] Wu Y, Yan H, Zhu X, Liu C, Chu C, Zhu X, et al. Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via restraining the energy supply for conjugative plasmid transfer. Environ Sci Technol. 2022;56: 12573-83. DOI: 10.1021/acs.est.2c02701.
  • [51] Cui H, Smith AL. Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: A comprehensive review. Environ Res. 2022;204:112373. DOI: 10.1016/J.ENVRES.2021.112373.
  • [52] Li YX, Chen TB. Concentrations of additive arsenic in Beijing pig feeds and the residues in pig manure. Resour Conserv Recycl. 2005;45:356-67. DOI: 10.1016/J.RESCONREC.2005.03.002.
  • [53] Palm M, Fransson A, Hultén J, Búcaro Stenman K, Allouche A, Chiang OE, et al. The effect of heavy metals on conjugation efficiency of an F-plasmid in Escherichia coli. Antibiotics. 2022;11. DOI: 10.3390/antibiotics11081123.
  • [54] Yonathan K, Mann R, Mahbub KR, Gunawan C. The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. Environ Pollut. 2022;293:118506. DOI: 10.1016/J.ENVPOL.2021.118506.
  • [55] Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, et al. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Sci Total Environ. 2022;821:153472. DOI: 10.1016/J.SCITOTENV 2022.153472.
  • [56] Zhang R, Yang S, An Y, Wang Y, Lei Y, Song L. Antibiotics and antibiotic resistance genes in landfills: A review. Sci Total Environ. 2022;806:150647. DOI: 10.1016/J.SCITOTENV.2021.150647.
  • [57] Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ. Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution. Sci Total Environ. 2023;857:159059. DOI: 10.1016/J.SCITOTENV.2022.159059.
  • [58] Ma L, Yang H, Guan L, Liu X, Zhang T. Risks of antibiotic resistance genes and antimicrobial resistance under chlorination disinfection with public health concerns. Environ Int. 2022;158:106978. DOI: 10.1016/J.ENVINT.2021.106978.
  • [59] Jiang S, Li Q, Wang F, Wang Z, Cao X, Shen X, et al. Highly effective and sustainable antibacterial membranes synthesized using biodegradable polymers. Chemosphere. 2022;291:133106. DOI: 10.1016/J.CHEMOSPHERE.2021.133106.
  • [60] Cheng CF, Lin HHH, Tung HH, Lin AYC. Enhanced solar photodegradation of a plasmid-encoded extracellular antibiotic resistance gene in the presence of free chlorine. J Environ Chem Eng. 2022;10:106984. DOI: 10.1016/J.JECE.2021.106984.
  • [61] Sánchez-Montes I, Salmerón I, Aquino JM, Polo-López MI, Malato S, Oller I. Solar-driven free chlorine advanced oxidation process for simultaneous removal of microcontaminants and microorganisms in natural water at pilot-scale. Chemosphere. 2022;288:132493. DOI: 10.1016/J.CHEMOSPHERE.2021.132493.
  • [62] Meng LX, Sun YJ, Zhu L, Lin ZJ, Shuai XY, Zhou ZC, et al. Mechanism and potential risk of antibiotic resistant bacteria carrying last resort antibiotic resistance genes under electrochemical treatment. Sci Total Environ. 2022;821:153367. DOI: 10.1016/J.SCITOTENV.2022.153367.
  • [63] Manoharan RK, Raorane CJ, Ishaque F, Ahn YH. Antimicrobial photodynamic inactivation of wastewater microorganisms by halogenated indole derivative capped zinc oxide. Environ Res. 2022;214:113905. DOI: 10.1016/J.ENVRES.2022.113905.
  • [64] Syranidou E, Kalogerakis N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs. Sci Total Environ. 2022;804:150141. DOI: 10.1016/J.SCITOTENV.2021.150141.
  • [65] Wang J, Chen X. Removal of antibiotic resistance genes (ARGs) in various wastewater treatment processes: An overview. Crit Rev Environ Sci Technol. 2022;52:571-630. DOI: 10.1080/10643389.2020.1835124.
  • [66] Bai H, He LY, Wu DL, Gao FZ, Zhang M, Zou HY, et al. Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Environ Int. 2022;158:106927. DOI: 10.1016/J.ENVINT.2021.106927.
  • [67] Gwenzi W, Shamsizadeh Z, Gholipour S, Nikaeen M. The air-borne antibiotic resistome: Occurrence, health risks, and future directions. Sci Total Environ. 2022;804:150154. DOI: 10.1016/J.SCITOTENV.2021.150154.
  • [68] Zhou Z, Shuai X, Lin Z, Meng L, Ba X, Holmes MA, et al. Short-term inhalation exposure evaluations of airborne antibiotic resistance genes in environments. J Environ Sci. 2022;122:62-71. DOI: 10.1016/J.JES.2021.10.002.
  • [69] George PBL, Rossi F, St-Germain M-W, Amato P, Badard T, Bergeron MG, et al. Antimicrobial resistance in the environment: Towards elucidating the roles of bioaerosols in transmission and detection of antibacterial resistance genes. Antibiotics. 2022;11. DOI: 10.3390/antibiotics11070974.
  • [70] McKinney CW, Dungan RS, Moore A, Leytem AB. Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure. FEMS Microbiol Ecol. 2018;94. DOI: 10.1093/femsec/fiy010.
  • [71] Kittredge HA, Dougherty KM, Evans SE. Dead but not forgotten: How extracellular DNA, moisture, and space modulate the horizontal transfer of extracellular antibiotic resistance genes in soil. Appl Environ Microbiol. 2022;88:e0228021. DOI: 10.1128/aem.02280-21.
  • [72] Kaviani Rad A, Astaykina A, Streletskii R, Afsharyzad Y, Etesami H, Zarei M, et al. An overview of antibiotic resistance and abiotic stresses affecting antimicrobial resistance in agricultural soils. Int J Environ Res Public Health. 2022;19. DOI: 10.3390/ijerph19084666.
  • [73] Li Z, Sun A, Liu X, Chen Q-L, Bi L, Ren P-X, et al. Climate warming increases the proportions of specific antibiotic resistance genes in natural soil ecosystems. J Hazard Mater. 2022;430:128442. DOI: 10.1016/j.jhazmat.2022.128442.
  • [74] Li H, Zheng X, Tan L, Shao Z, Cao H, Xu Y. The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. Environ Res. 2022;203:111884. DOI: 10.1016/j.envres.2021.111884.
  • [75] Zhu L, Lian Y, Lin D, Huang D, Yao Y, Ju F, et al. Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. J Hazard Mater. 2022;437:129356. DOI: 10.1016/J.JHAZMAT.2022.129356.
  • [76] Wang J, Wang L, Zhu L, Wang J, Xing B. Antibiotic resistance in agricultural soils: Source, fate, mechanism and attenuation strategy. Crit Rev Environ Sci Technol. 2022;52:847-89. DOI: 10.1080/10643389.2020.1835438.
  • [77] Lu XM, Chen YL. Varying characteristics and driving mechanisms of antibiotic resistance genes in farmland soil amended with high-density polyethylene microplastics. J Hazard Mater. 2022;428:128196. DOI: 10.1016/J.JHAZMAT.2021.128196.
  • [78] Sun R, He L, Li T, Dai Z, Sun S, Ren L, et al. Impact of the surrounding environment on antibiotic resistance genes carried by microplastics in mangroves. Sci Total Environ. 2022;837:155771. DOI: 10.1016/J.SCITOTENV.2022.155771.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8183bd5b-a748-47fa-885c-6ee0ab2bd5a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.