PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The increasing aluminum content affects the growth, cellular chlorophyll a and oxidation stress of cyanobacteria Synechococcus sp. WH7803

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effects of marine aluminum (Al) on phytoplankton are controversial, making it important to elucidate the mechanisms underlying Al effects. This study was aimed at identifying the effects of Al on the growth, chlorophyll a (chl a) content and the antioxidant mechanism of cyanobacteria Synechococcus sp. WH7803. The growth rate increased from 0.33 to 0.52 d-1 in media with the increasing Al concentration from 0.2 (control) to 20 μmol l-1 and almost saturated to 0.44 d-1 at ~ 0.5 μmol Al l-1. The higher growth resulted in the higher biomass in both stationary and decay phases in the conditions of higher Al content. Chl a per cell reached 10.19 μg cell-1 in the exponential phase at 20 μmol Al l-1, approximately 1.6 and 3.1 times higher than those in stationary and decay phases, respectively, and chl a per cell showed a similar pattern as a growth rate when plotted with Al content. Al addition increased the cellular methane dicarboxylic aldehyde (MDA) content in the exponential phase and decreased the superoxide dismutase (SOD) activity in the decay phase. In particular, our results indicated a positive relationship between chl a per cell and the growth rate, suggesting the stimulation of increasing Al on the growth of Synechococcus is related to the enhancement of cellular chl a content.
Rocznik
Strony
343--351
Opis fizyczny
Bibliogr. 36 poz., wykr.
Twórcy
autor
  • CAS Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • CAS Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
autor
  • CAS Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
autor
  • CAS Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • CAS Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Bibliografia
  • [1]. Chung, C.C., Chang J., Gong G.C., Hsu S.C., Chiang K.P. et al. (2011). Effects of Asian dust storms on synechococcus population in the subtropical Kuroshio Current. Mar. Biotechnol. 13(4): 751-763. DIO: 10.1007/s10126-010-9336- 5.
  • [2]. Gehlen, M., Beck L. & Calas G. (2002). Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules. Geochim. Cosmochim. Ac. 66: 1601-1609. DIO: http://dx.doi. org/10.1016/080394899427764.
  • [3]. Gensemer, R.W. & Playle R.C. (1999). The bioavailabiligy and toxicity of aluminum in aquatic environments. Crit. Rev. Cl. Lab. Sci. 29(4): 315-450.
  • [4]. Glover, H.E. (1985). The physiology and ecology of the marine cyanobacterial genus Synechococcus. Adv. Aquat. Microbiol. 3: 49-107.
  • [5]. Golding, L.A., Angel B.M., Batley G.E., Apte S.C., Krassoi R. et al. (2014). Derivation of a water quality guideline for aluminium in marine waters. Environ. Toxicol. Chem. 34(1): 141-151. DOI: 10.1002/etc.2771.
  • [6]. Hajiboland, R., Bahrami R.S., Barceló J., Poschenrieder C. (2013). Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J. Plant. Nutr. Soil. Sc. 176(4): 616¬625. DOI: 10.1002/jpln.201200311.
  • [7]. Han, Q., Moore J.K., Zender C., Measures C., Hydes D. ( 2008). Constraining oceanic dust deposition using surface ocean dissolved Al. Global. Biogeochem. Cy. 22(2): 14 pages. DOI:10.1029/2007GB002975.
  • [8]. Herut, B., Zohary T. & Krom M.D. (2005). Response of East Mediterranean surface water to Saharan dust: on-board microcosm experiment and field observations. Deep. Sea. Res. Pt. II. 52: 3024-3040. DOI: 10.1016/j.dsr2.2005.09.003.
  • [9]. Iturriaga, R. & Mitchell B.G. (1986). Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean. Mar. Ecol. Prog. Ser. 28: 291-297. DOI: 10.3354/ meps028291.
  • [10]. Jickells, T.D. (1995). Atmospheric inputs of metals and nutrients to the oceans: their magnitude and effects, Mar. Chem. 48(3- 4): 199-214. DOI: 10.1016/0304-4203(95)92784-P.
  • [11]. Kochian, L.V (1995). Cellular mechanisms of Al toxicity and resistance in plants. Annu. Rev. Plant. Physiol. Plant. Mol. Boil. 46: 237-260. DOI: 10.1146/annurev.pp.46.060195.001321.
  • [12]. Kong, L.L. (2011). The preliminary study on the relationship of NO and the salt-stress physiology of Dunaliella salina. Unpublished Master dissertation, Shandong university, Jinan, Shandong, (In Chinese).
  • [13]. Koning, E., Gehlen M. & Flank A.M. (2007). Rapid post-mortem incorporation of Al in diatom frustules: Evidence from chemical and structural analyses, Mari. Chem. 106: 208-222. DOI: 10.1016/j.marchem.2006.06.009.
  • [14]. Koshikawa, M.K., Sugiyama M. & Hori T. (2002). Seasonal variation of dissolved Al concentration in harmonic-type Lake Biwa, Japan. Limnology 3(1): 1-9. DOI: 10.1007/ s102010200000.
  • [15]. Li, F.M., Ren J.L. & Yan L. (2013). The biogeochemical behavior of dissolved Al in the southern Yellow Sea: Influence of the spring phytoplankton bloom. Chin. Sci. Bull. 58(2): 238-248. DOI: 10.1007/s11434-012-5512-5.
  • [16]. Li, G. & Campbell D.A. (2013). Interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal Diatom Thalassiosira pseudonana. Plos one 8(1): e55562. 13 pages. DOI: 10.1371/journal.pone.0055562.
  • [17]. Li, G., Huang L.M., Liu H.X., Ke Z.X., Lin Q. et al. (2012). Latitudinal variability (6°S-20°N) of early summer phytoplankton species compositions and sizefractioned productivity from Java Sea to South China Sea. Mar. Biol. Res. 8(2): 163-171. DOI: org/10.1080/17451000.2011.61532 3.
  • [18]. Measures, C.I., Brown M.T. & Vink S. (2005). Dust deposition to the surface waters of the western and central North Pacific inferred from surface water dissolved aluminum concentrations. Geochem. Geophy. Geosy. 6(9): Q09M03, 16 pages. DOI: 10.1029/2005GC000922.
  • [19]. Measures, C.I. & Edmond J.M. (1988). Aluminium as a tracer of the deep outflow from the Mediterranean. J. Geophys. Res- Oceans. 93(C1): 591-595. DOI: 10.1029/JC093iC01p00591.
  • [20]. Millero, FJ., Woosley R., Ditrolio B., Waters J. (2009). Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22: 72-85.
  • [21]. Minakawa, M. & Watanabe Y. (1998). Al in the East China Sea and Okinawa trough, marginal sea areas of the western north pacific. J. Oceanogr. 54(6): 629-640. DOI: 10.1007/ BF02823283.
  • [22]. Moran, S.B. & Moore R.M. (1991) The potential source of dissolved aluminum from resuspended sediments to the North Atlantic Deep Water. Geochim. Cosmochim. Ac. 55(10): 2745-2751. DOI: 10.1016/0016-7037(91)90441-7.
  • [23]. Orians, K. & Bruland K. (1986). The biogeochemistry of aluminum in the Pacific Ocean. Earth. Planet. Sci. Lett. 78: 397-410. DOI: 10.1016/0012-821X(86)90006-3.
  • [24]. Pan, J.W., Zhu M.Y. & Chen H. (2001). Aluminum-induced cell death in root-tip cells of barley. Environ. Exp. Bot. 46(1): 71¬79. DOI: 10.1016/S0098-8472(01)00083-1.
  • [25]. Parsons, T.R., Maita Y. & Lalli C.M. (1984). A manual of chemical and biological methods for seawater analysis. Toronto: Pergamon Press.
  • [26]. Qian, H., Pan X. & Shi S. (2011). Effect of nonylphenol on response of physiology and photosynthesis-related gene transcription of Chlorella vulgaris. Environ. Monit. Assess. 182(1-4): 61-69. DOI: 10.1007/s10661-010-1858-9.
  • [27]. Ren, J.L., Zhang G.L. & Zhang J. (2011). Distribution of dissolved aluminum in the Southern Yellow Sea: Influences of a dust storm and the spring bloom. Mar. Chem. 125(1-4): 69-81. DOI: 10.1016/j.marchem.2011.02.004.
  • [28]. Ren, J.F., Zhang J. & Luo J.Q. (2001). Improved fluorimetric determination of dissolved aluminum by micelle- enhanced lumogallion complex in natural waters, Analyst 126(5): 698¬702. DOI: 10.1039/B007593K.
  • [29]. Saęan, M.T., Oztay F. & Bolkent S. (2007). Exposure of Dunaliella tertiolecta to lead and aluminum: Toxicity and effects on ultrastructure. Biol. Trace. Elem. Res. 120(1-3): 264-272. DOI: 10.1007/s12011-007-8016-4.
  • [30]. Sharma, N.K., Tiwari S.P. & Tripathi K. (2011). Sustainability and cyanobacteria (blue-green algae): facts and challenges. J. Appl. Phycol. 23(6): 1059-1081. DOI: 10.1007/s10811-010- 9626-3.
  • [31]. Stoflyn, M. (1979). Biological control of dissolved Al in seawater: experimental evidence. Science 203(4381): 651-653. DOI: 10.1126/science.203.4381.651.
  • [32]. Vrieling, E.G.., Poort L. & Beelen T.P.M. (1999). Growth and silica content of the diatoms Thalassiosira weissflogii and Navicula salinarum at different salinities and enrichments with aluminium. Eur. J. Phycol. 34(3): 307-316. DOI: 10.1080/09670269910001736362.
  • [33]. Wang, Q. & Tan Y.H. (2013). Distribution of dissolved aluminium and its affect to the phytoplankton community structure in the South China Sea. Unpublished Master dissertation, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, Guangdon, (In Chinese).
  • [34]. Wang, Y., Wu J.Q. & Michael J. (1997). Conditions for the induction of long-term potentiation and long term depression by conjunctive pairing in the dentate gyms in vitro. J. Neurophysiol. 78(5): 2569-2573.
  • [35]. Waterbury, J.B., Watson S.W., Valois F.W. (1986). Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can. Bull. Fish. Aquat. Sci. 214: 71-120.
  • [36]. Xie, J., Bai X., Li Y., Sun C., Qian H. et al. (2014). The effect of glufosinate on nitrogen assimilation at the physiological, biochemical and molecular levels in Phaeodactylum tricornutum. Ecotoxicology 23(8): 1430-1438. DOI: 10.1007/ s10646-014-1285-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81834c09-cff1-4271-8e22-5f849d3f9638
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.