Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper proposes the WLMF (Wavelet Leaders Multifractal Formalism) method enabling the adoption of multifractal parameters mapped by vibration signal log-cumulants as diagnostic features, in the procedure of automatic classification of assembly errors and wear of demonstration gearbox. In the analysis of vibration time signals, initially, a multifractal formalism was used based on the study of time series local regularity, which is measured by Holder exponents. The presented test results relate to time-frequency multifractal analysis, the starting point of which was a continuous wavelet transform. Discrete wavelet transform allowed for much better grounded multifractal formalism and more accurate estimation of multifractal parameters using wavelet leaders, which are determined based on wavelet coefficients and are representatives of Holder exponents.
Czasopismo
Rocznik
Tom
Strony
art. no. 2019207
Opis fizyczny
Bibliogr. 9 poz., 1 fot., 1 rys., wykr.
Twórcy
autor
- University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom
autor
- University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600 Radom
Bibliografia
- 1. I. W. Kantelhardt, Fractal and Multifractal Time Series, Mathematics of Complexity and Dynamical Systems, Springer-Verlag, New York (2011) 463 – 487.
- 2. S. J. Loutridis, An algorithm for the characterization of time-series based on local regularity, Physica A, 381 (2007) 383 – 398.
- 3. S. Zhang, Y. He, J. Zhang, Y. Zhao, Multi-fractal based fault diagnosis method of rotating machinery, Applied Mechanics and Materials, 130(2) (2012) 571 – 574.
- 4. A. Puchalski, I. Komorska, A generalised entropy in multifractal time signals analysis of mechanical vibration, JVE Journal of Vibroegineering, 20(4) (2018) 1667 – 1675.
- 5. H. Liu, X. Wang, C. Lu, Rolling bearing fault diagnosis based on LCD-TEO and multifractal detrended fluctuation analysis, Mechanical Systems and Signal Processing, 60-61 (2015) 273 – 288.
- 6. A. Puchalski, I. Komorska, Stable Distributions and Fractal Diagnostic Models of Vibration Signals of Rotating Systems, Appl. Condition Monitoring (Springer Int. Pub. AG, 9 (2018) 91 – 101.
- 7. A. J. Chen, Z Li, J. Pan, G. Chen, Y. Zi, J. Yuan, B. Chen, Z. He, Wavelet transform based on inner product in fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, 70-71 (2016) 1 – 35.
- 8. W. Du, J. Tao, Y. Li, C. Liu, Wavelet leaders multifractal features based fault diagnosis of rotating mechanism, Mechanical Systems and Signal Processing, 43 (2014) 57 – 75.
- 9. H. Wendt, S. G. Roux, S. Jaffard, P. Abry, Wavelet leaders and bootstrap for multifractal analysis of images, Signal Processing, 89(6) (2009) 1100 – 1114.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81811348-e873-46fc-bf58-12c594db2673