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Abstract  

The paper proposes the WLMF (Wavelet Leaders Multifractal Formalism) method enabling the adoption of 
multifractal parameters mapped by vibration signal log-cumulants as diagnostic features, in the procedure of 

automatic classification of assembly errors and wear of demonstration gearbox. In the analysis of vibration time 
signals, initially, a multifractal formalism was used based on the study of time series local regularity, which is 

measured by Holder exponents. The presented test results relate to time-frequency multifractal analysis,  

the starting point of which was a continuous wavelet transform. Discrete wavelet transform allowed for much 
better grounded multifractal formalism and more accurate estimation of multifractal parameters using wavelet 

leaders, which are determined based on wavelet coefficients and are representatives of  Holder exponents.  
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1. Introduction  

In the era of industry digitization and its transformation to Industry 4.0 standards, making 

diagnostic decisions involves the analysis of large databases from earlier registers as well 

as data downloaded from machines in real time via the industrial internet of things.  

More and more often a better option than searching for specific models is a direct analysis 

and diagnostics based on experimental data. The process requires advanced methods of 

stochastic analysis and solutions from the field of machine learning. Models  

and diagnostic features stop being physically interpreted, giving way to the statistical 

indicators. 

This way of modeling and quantitative analysis of the dynamics of complex systems, 

consisting of many non-linear interacting systems operating at variable loads, is a big 

challenge for modern diagnostics of rotating machines. The solution to the task becomes 

closer due to the study of monitored real vibration signals using advanced numerical 

algorithms and the increasing computing power of computers. 

Multifractal analysis, which is mainly based on estimates of the scaling exponents of 

the recorded signal, has become a popular tool for statistical analysis of empirical data. 

The observed properties of time series scaling measures can be used to characterize 

various states of a complex system [1].  
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In the analysis of vibration time signals, initially, a multifractal formalism was used 

based on the study of their local regularity, which is measured by Holder exponents [2]. 

Trend elimination from the studied time series in the multifractal detrended fluctuation 

analysis (MF-DFA) leads to the determination of diagnostic features in the form of 

multifractal spectrum parameters. Detrended fluctuation analysis is an important tool  

in the study of variable-scale and long-term properties as well as the selection and 

classification of diagnostic features of vibration signals generated by complex rotating 

machinery [3-6]. The large computational complexity of the algorithm for  

the approximation of the time series of 𝑁 samples, with a polynomial of the order 𝑚,  

is estimated at 2(𝑚 + 2)2𝑁. 

Time-frequency analysis of signals based on discrete wavelet transform allowed for 

much better grounded multifractal formalism and more accurate estimation of multifractal 

parameters using wavelet leaders, which are determined based on wavelet coefficients and 

are representatives of Holder's exponents [7]. The algorithm implemented by Mallat 

pyramid scheme shows a much lower computational complexity than the fluctuation 

analysis and is estimated to be 𝑁log𝑁. 

Chapter 2 highlights the theoretical basis and algorithms diagram of time-frequency 

multifractal formalism. Chapter 3 discusses and verifies the WLMF (Wavelet Leaders 

Multifractal Formalism) method enabling the adoption of multifractal parameters mapped 

by vibration signal log-cumulants as diagnostic features, in the procedure of automatic 

classification of assembly errors and wear of demonstration gearbox. Chapter 4 provides 

a summary of the studies and the results obtained. 

2. Theoretical background. Time-frequency multifractal formalism 

Time-frequency signal analysis methods have allowed a new look at the problem of 

estimating local scaling exponents as a way of testing the regularity of time series  

and their multifractality. From both a conceptual and practical point of view, the wavelet 

transform played a special role [8]. 

The WTMM (Wavelet Transform Modulus Maxima) method is based on the 

continuous wavelet transform (CWT). It consists in determining wavelet skeleton defined 

by the set of all maxima lines, summation executed along q-th power of maxima chains 

and its scaling exponents and Legendre transforms. Practical implementations of such  

an algorithm have shown some disadvantages that make it impossible to carry out tests for 

some types of real signals. For wavelet coefficients centered around zero values, it is 

difficult to guarantee numerical stability. This problem does not appear in the case of the 

WLMF method, in which the base is the wavelet coefficients obtained as a result of the 

discrete wavelet transform (DWT) according to the Mallat pyramid scheme. The next steps 

of the algorithm include the selection of coefficients called wavelet leaders,  

the determination of the structural function and scaling exponents as well as  

the multifractal spectrum 𝐷(ℎ) or the direct determination of spectrum parameters using 

a log-cumulants (Figure 1). 
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Figure 1. Block diagram of time-frequency multifractal analysis  

according to the WTMM and WLMF scheme 

Wavelet leaders are local maxima of discrete wavelet coefficients 𝑑𝜆′: 𝐿𝑥(𝑗, 𝑘) =

𝑠𝑢𝑝𝜆′∈3𝜆|𝑑𝜆′|, where 3𝜆 ∶= 3𝜆𝑗,𝑘 = 𝜆𝑗,𝑘−1 ∪ 𝜆𝑗,𝑘 ∪ 𝜆𝑗,𝑘+1 and 𝜆 ∶= 𝜆𝑗,𝑘 = [𝑘2𝑗, (𝑘 +

1)2𝑗] at any scale. Wavelet leaders are representatives of the Holder exponents ℎ: 

𝐿𝑥(𝑗, 𝑘)~2𝑗ℎ. Structure-function 𝑍𝐿(𝑞, 𝑗) is defined as a spatial average of the q-th order 

of the leaders. It can be shown that: 𝑍𝐿(𝑞, 𝑗)~2𝑗𝜁(𝑞) in the limit 2𝑗 → 0 [9]. Besides, the 

Legendre transform of the scaling exponent 𝜁(𝑞) of the structure-function, provides an 

upper bound for the multifractal spectrum . 

Knowledge of the scaling exponent 𝜁(𝑞) also allows direct estimation of multifractal 

spectrum 𝐷(ℎ) parameters using a log-cumulants 𝑐𝑝 of order 𝑝 ≥ 1, obtained as a result 

of Taylor series expansion. 

Log-cumulant 𝑐1 describes the location of the highest multifractal spectrum value, 

while 𝑐2 and 𝑐3 describe the level of multifractality: spectrum width and asymmetry, 

respectively. The scaling exponents of the structural function are not dependent on  

the choice of the wavelet, provided that the number of zero moments of the wavelet is two 

times greater than the largest exponent of the Holder exponent. The use of a discrete 

wavelet transform has also reduced the time costs of calculations.  
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3. Implementation of the diagnostic algorithm 

Measurements were carried out on a demonstration stand (Figure 2). The influence of 

assembly errors and wear of gear teeth on vibrations was investigated. The electric motor 

allows speed control in the range of 100 - 3000 rpm (no load). The load is pressure 

regulated using an overflow valve up to 5 MPa. The acceleration of vibrations was 

measured utilizing an accelerometer screwed to the gear bearing housing in a vertical 

direction. The optimal backlash was set to 0.1 mm. 

 

Figure 2. The test stand 

Measurements were carried out for the following 5 states: 

 fault-free (new gears, the optimal backlash, parallel shaft location),  

 new gears and misalignment by an angle 1/3o , 

 new gears and increased backlash +0.2 mm,  

 worn teeth,  

 worn teeth and increased backlash +0.2 mm. 

Vibration acceleration signals were recorded for a rotational speed of 1365 rpm  

and a load of 12% - pressure 0.6 MPa (Figure 3). Each sample included a time series  

with a length of N = 10.000, recorded at a sampling frequency of 10 kHz. 
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Figure 3. Waveforms of vibration signals recorded in 5 states of the gearbox:  

a) fault-free state, b) misalignment, c) increased backlash, d) worn teeth,  

e) worn teeth, and increased backlash 

Figure 4 shows the maps of wavelet leaders designated for two states: fault-free  

and worn teeth. For the classification of the tested operating states of the propulsion 

system, mapped using multifractal spectra (Figure 5), log-cumulants of the 1st and 2nd 

order were selected, determined based on wavelet leaders of the vibration acceleration 

signal.  

 

Figure 4a. Sample values of vibration signals wavelet leaders  

for gearbox in fault-free state 
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Figure 4b. Sample values of vibration signals wavelet leaders  

for gearbox in worn teeth 

 

Figure 5. Multifractal spectra of vibration signals recorded  

in 5 states of the gearbox 

A series of 30 measurements were taken in each state. Classification of the tested state 

of the system to the appropriate class and analysis of the quality of the classification was 

carried out using the method of the nearest neighbors. The cross-validation technique was 

used to estimate accuracy. Classification accuracy was assessed based on the ratio of  

the number of correctly classified results of the experiments to their total number.  

All tested states of the system were separated with 92% accuracy of classification.  

The classification errors referred to the states: fault-free, misalignment, and increased 

backlash. 
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For improving the classification efficiency, other signal measures were determined: RMS, 

skewness, kurtosis. The scattering analysis of the tested parameters showed that achieving 

100% accuracy in the classification of the tested operating states of the transmission is 

enabled by a feature vector whose third coordinate, in addition to the two log-cumulants, 

is skewness (Figure 6). 

 

 

Figure 6. Scattering plot of selected diagnostic features: log-cumulants 𝑐1,  𝑐2,  

and skewness for 30 signal samples in each of the tested states 

4. Conclusions 

Most of the real vibration time series exhibit properties well described by local scaling 

exponents, which can act as diagnostic features. Multifractal formalism makes it possible 

to describe such signals that potentially contain an infinite number of singularities. There 

are several methods to study time series for their fractality. The possibilities of time  

and time-frequency algorithms were compared. Considering the greatest universality  

in real signal analysis and the lowest numerical complexity (time and requirements  

for memory resources) of the wavelet leader algorithm, its operation has been verified for 

use in vibration diagnostics of rotating systems. Multifractal parameters estimated using 

the log-cumulants were adopted as diagnostic features in the classification procedure by 

the method of nearest neighbors. 

As part of the continuation of research, tests are carried out on multidimensional 

feature vectors of low-energy damage to rotating machines defined based on log-

cumulants and the other values of scaling exponents of the structural function  

and multifractal spectra for a selected range of moments. 
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