PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel explainable AI model for medical data analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research focuses on the development of an explainable artificial intelligence (Explainable AI or XAI) system aimed at the analysis of medical data. Medical imaging and related datasets present inherent complexities due to their high-dimensional nature and the intricate biological patterns they represent. These complexities necessitate sophisticated computational models to decode and interpret, often leading to the employment of deep neural networks. However, while these models have achieved remarkable accuracy, their ”black-box” nature raises legitimate concerns regarding their interpretability and reliability in the clinical context. To address this challenge, we can consider the following approaches: traditional statistical methods, a singular complex neural network, or an ensemble of simpler neural networks. Traditional statistical methods, though transparent, often lack the nuanced sensitivity required for the intricate patterns within medical images. On the other hand, a singular complex neural network, while powerful, can sometimes be too generalized, making specific interpretations challenging. Hence, our proposed strategy employs a hybrid system, combining multiple neural networks with distinct architectures, each tailored to address specific facets of the medical data interpretation challenges. The key components of this proposed technology include a module for anomaly detection within medical images, a module for categorizing detected anomalies into specific medical conditions and a module for generating user-friendly, clinically-relevant interpretations.
Rocznik
Strony
121--137
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Department of Artificial Intelligence Systems, Lviv Polytechnic National University, 5 Kniazia Romana St., Lviv, Ukraine
  • Department of Applied Mathematics, University of Agriculture in Krakow, 21 Mickiewicza al., 31-120 Krakow, Poland
  • Department of Artificial Intelligence Systems, Lviv Polytechnic National University, 5 Kniazia Romana St., Lviv, Ukraine
  • Department of Applied Mathematics, University of Agriculture in Krakow, 21 Mickiewicza al., 31-120 Krakow, Poland
  • Institute of Mathematics of NAS of Ukraine, 3, Tereschenkivska st., 01024 Kiyv-4, Ukraine
Bibliografia
  • [1] Lane T. (2018). A short history of robotic surgery. Annals of the Royal College of Surgeons of England, 100(6 sup), 5–7.https://doi.org/10.1308/rcsann.supp1.5
  • [2] Liu P.-R., Lu L., Zhang J.-Y., Huo T.-T., Liu S.-X., & Ye Z.-W. (2021). Application of Artificial Intelligence in Medicine: An Overview. Current Medical Science, 41(6), 1105–1115. https://doi.org/10.1007/s11596-021-2474-3
  • [3] Zhang Y., Weng Y., & Lund J. (2022). Applications of Explainable Artificial Intelligence in Diagnosis and Surgery. Diagnostics (Basel, Switzerland), 12(2), 237. https://doi.org/10.3390/diagnostics12020237
  • [4] Ribeiro M. T., Singh S., & Guestrin C. (2016). ”Why Should I Trust You?”: Explaining the Predictions of Any Classifier (arXiv:1602.04938).arXiv. http://arxiv.org/abs/1602.04938
  • [5] Lundberg S. M., & Lee S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems, 30. https://papers.nips.cc/paper files/paper/2017/hash/8a20a8621978632d76c4-3dfd28b67767-Abstract.html
  • [6] Camalan S., Mahmood H., Binol H., Araujo A. L. . Santos-Silva, A. R. Vargas, P. A. Lopes, M. A. Khurram, S. A. & Gurcan, M. N. (2021). Convolutional Neural Network-Based Clinical Predictors of Oral Dysplasia: Class Activation Map Analysis of Deep Learning Results. Cancers, 13(6), 1291. https://doi.org/10.3390/cancers13061291
  • [7] Selvaraju R. R., Cogswell M., Das A., Vedantam R., Parikh D., & Batra D. (2020). GradCAM: Visual Explanations from Deep Networks via Gradient-based Localization. International Journal of Computer Vision, 128(2), 336–359. https://doi.org/10.1007/s11263-019-01228-7
  • [8] Fuhrman J. D., Gorre N., Hu Q., Li H., El Naqa I., & Giger, M. L. (2022). A review of explainable and interpretable AI with applications in COVID-19 imaging. Medical Physics, 49(1), 1–14. https://doi.org/10.1002/mp.15359
  • [9] Vinogradova K., Dibrov A., & Myers G. (2020, April). Towards interpretable semantic segmentation via gradient-weighted class activation mapping (student abstract). In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 10, pp. 13943-13944)
  • [10] Phillips P. J., Hahn C. A., Fontana P. C., Yates A. N., Greene, K., Broniatowski, D. A., & Przybocki, M. A. (2021). Four principles of explainable artificial intelligence (NIST IR 8312; c. NIST IR 8312). National Institute of Standards and Technology (U.S.). https://doi.org/10.6028/NIST.IR.8312
  • [11] Shakhovska N., & Pukach P. (2022). Comparative Analysis of Backbone Networks for Deep Knee MRI Classification Models. Big Data and Cognitive Computing, 6(3), 69. https://doi.org/10.3390/bdcc6030069
  • [12] Johnson K. W., Torres Soto J., Glicksberg B. S., Shameer K., Miotto, R., Ali M., Ashley E., & Dudley J. T. (2018). Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521
  • [13] Lipkova J., Chen R. J., Chen B., Lu M. Y., Barbieri M., Shao, D., Vaidya A. J., Chen C., Zhuang, L., Williamson D. F. K., Shaban M., hen, T. Y., & Mahmood F. (2022). Artificial intelligence for multimodal data integration in oncology. Cancer Cell, 40(10), 1095–1110. https://doi.org/10.1016/j.ccell.2022.09.012
  • [14] Schwendicke F., Samek W., & Krois J. (2020). Artificial Intelligence in Dentistry: Chances and Challenges. Journal of Dental Research, 99(7), 769–774. https://doi.org/10.1177/0022034520915714
  • [15] Vo T. H., Nguyen N. T. K., Kha Q. H., & Le N. Q. K. (2022). On the road to explainable AI in drug-drug interactions prediction: A systematic review. Computational and Structural Biotechnology Journal, 20, 2112–2123. https://doi.org/10.1016/j.csbj.2022.04.021
  • [16] Štajduhar I., Mamula M., Miletič D., & Ünal G. (2017). Semi-automated detection of anterior cruciate ligament injury from MRI. Computer Methods and Programs in Biomedicine, 140, 151–164. https://doi.org/10.1016/j.cmpb.2016.12.006
  • [17] Krizhevsky A., Sutskever I., & Hinton G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25. https://proceedings.neurips.cc/paper files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
  • [18] Zhang R., Du L., Xiao, Q., & Liu J. (2020, May). Comparison of backbones for semantic segmentation network. In Journal of Physics: Conference Series (Vol. 1544, No. 1, p. 012196). IOP Publishing.
  • [19] Woldan P., Duda P., Cader A., & Laktionov I. (2023). A new approach to image-based recommender systems with the application of heatmaps maps. Journal of Artificial Intelligence and Soft Computing Research, 13(2), 63-72.
  • [20] Nowicki R. K., Seliga R., Zelasko D., & Hayashi Y. ˙ (2021). Performance analysis of rough set–based hybrid classification systems in the case of missing values. Journal of Artificial Intelligence and Soft Computing Research, 11(4), 307-318.
  • [21] Baradaran Rezaei, H., Amjadian, A., Sebt, M. V., Askari, R., & Gharaei, A. (2023). An ensemble method of the machine learning to prognosticate the gastric cancer. Annals of Operations Research, 328(1), 151-192.
  • [22] Dong H., Sun J., & Sun X. (2021). A multiobjective multi-label feature selection algorithm based on shapley value. Entropy, 23(8), 1094.
  • [23] Starczewski Janusz T., Przybyszewski Krzysztof, Byrski Aleksander, Szmidt Eulalia & Napoli Christian. (2022). A Novel Approach to Type-Reduction and Design of Interval Type-2 Fuzzy Logic Systems” Journal of Artificial Intelligence and Soft Computing Research, 12(3), 197-206.
  • [24] Laktionov I., Diachenko G., Rutkowska D. & Kisiel-Dorohinicki,M.(2023).An Explainable AI pproach to Agrotechnical Monitoring and Crop Diseases Prediction in Dnipro Region of Ukraine. Journal of Artificial Intelligence and Soft Computing Research,13(4) 247-272.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81806531-d129-42ce-8ff4-d5ac1508b7f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.