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METHOD OF MEASURING FRICTIONAL RESISTANCE  
IN PENDULAR MOTION

Metoda poMIaru oporóW tarcIa W ruchu WahadłoWyM 
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Abstract:   This paper presents a methodology for conducting tribological sliding tests based on decaying vibrations 
in pendular motion. The proposed method of determining the (averaged) coefficient of friction in pendular 
motion is based on measuring the potential kinetic energy. The method is characterized by a short measuring 
time and enables a quick comparison of the friction coefficients of different materials.
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Streszczenie:   W artykule przedstawiono metodykę prowadzenia badań tribologicznych materiałów ślizgowych na pod-
stawie drgań gasnących w ruchu wahadłowym. Zaproponowana metoda wyznaczania współczynnika tarcia 
(uśrednionego) w ruchu wahadłowym opiera się na pomiarze energii potencjalno-kinetycznej. Zaproponowa-
na metoda cechuje się krótkim czasem prowadzenia pomiarów oraz umożliwia szybkie porównanie współ-
czynników tarcia dla różnych materiałów.
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INTRODUCTION

The ever-increasing requirements for modern 
design solutions and the more and more common 
use of polymeric materials in technical applications 
imply the need for a thorough knowledge of 
such materials. Some polymer materials have 
excellent sliding properties, whereby they can 
be used in tribological assemblies [L. 1]. Hence, 
they are a popular subject of tribological (but not 
exclusively) research. According to Lawrowski's 
estimates, about 30% of the energy produced in the 
world is lost due to frictional resistance. Therefore, 
there is an understandable interest in tribological 
testing methods. According to other forecasts, in 
the next 30 years, some areas of tribology will lose 
their significance, while others will gain it [L. 3]. 
The efforts to minimize energy losses associated 
with the friction process in sliding pairs will remain 

unchanged, mainly because of the technological 
progress and the care for the natural environment 
as well as for economic reasons.

Friction testing devices are divided primarily 
according to the geometry of the contact between 
the specimen and the counter-body. The basic types 
of contact are cylinder-plane (e.g., T-07), plane-
surface (the T-01M pin-on-disc tester), ball-ball 
(the four-ball apparatus), and ball-plane (various 
scratch resistance testing devices). Tribometers 
are usually used to measure the friction force, the 
wear of friction joint elements, and the friction path 
length and velocity [L. 4]. Special tribometers are 
designed for specialized applications, such as hip 
joint endoprosthesis testing [L. 5–7]. Universal 
devices enabling testing in complex motion 
(e.g., rolling and sliding) conditions are popular  
[L. 8]. They are used to test the friction parameters 
of materials in various material pairs at different 
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friction velocities, under different loads, and so on 
[L. 9]. They also enable one to control the motion 
parameters of a material pair in a wide range  
[L. 10].

This paper presents a method of determining 
the frictional resistance of metal-polymer sliding 
pairs in pendular motion by means of a physical 
pendulum. Using this method, one can quickly 
compare the frictional resistances of different 
materials and determine the averaged friction 
coefficient value.

MATERIALS AND METHODS

Using the designed measuring stand, one can 
measure the energy dissipated in pendular 
motion by comparing pendulum swing angles in 
successive motion cycles. Assuming that all the 
dissipated energy was used to cover the friction 
losses and knowing the friction path length, one 
can determine the frictional resistance (the friction 
moment) and so the averaged friction coefficient 
value. As the idea was to maximally simplify the 
measuring stand design, the latter is not equipped 
with additional electronic sensors (e.g., force or 
velocity sensors); therefore, it is more reliable and 
resistant to damage. The only electronic component 
is an incremental encoder with a resolution of  
1000 imp/rev.

Fig. 1. Model of measuring stand used to develop test 
methodology

Rys. 1. Model stanowiska pomiarowego wykorzystanego do 
opracowania metodologii badań

Fig. 2.  Schematic of friction joint in considered stand 
Rys. 2.  Schemat węzła tarcia w rozpatrywanym stanowisku 

As the pendulum moves, both the velocity 
in the contact zone and the pressure distribution 
change. One should note that motion energy 
dissipation results not only from friction in the area 
where the axles are in contact with the supports, but 
also from the air resistance of the moving weight 
suspended from the string.

Two basic types of pendulums are distinguished 
in mechanics:
• Mathematical – a material particle moving along 

a circle in the vertical plane in a homogeneous 
gravitational field, and

• Physical – a rigid body suspended from a fixed 
horizontal axis in a homogeneous gravitational 
field.

The equation of motion of a mathematical 
pendulum is as follows:

θ(t) = θ0 sin(ω0 t + φ),                        (1)

where:
θ0 –  the vibration amplitude,

ω0 = g
l

 – the circular frequency of vibrations 1
s







, 

φ – the initial phase of vibration.

However, the above equation is valid for 
only small pendulum deflections (where sinα ≈ α). 
The general formula for the vibration period 
of a mathematical pendulum for any vibration 
amplitude has this form:
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The equation of the motion dynamics of 
a physical pendulum is as follows:
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  Izφ = -mgh sinφ                       (3)

The period of vibrations for small deflections 
is expressed as follows:

      

T p l
g

p I
mgh

red z= =2 2�                  (4)

It can be assumed that to each physical 
pendulum vibrating around given point O with 
period T corresponds to a mathematical pendulum 
with length L0, which is also vibrating with the 
same period T.

Harmonic damping consists in the vibration 
amplitude diminishing over time, and it is connected 
with energy losses in vibrating systems. The general 
equation for a damped harmonic oscillator has the 
following form:

d x
dt

dx
dt

n x
2

2 0
220 0+ + = ,                 (5)

where: β – the damping factor.

The damping factor is directly proportional to 
the damping decrement. A parameter referred to as 
the damping power factor is also known:

  
a =

  
   

(6)

Depending on the values assumed by the 
damping power factor, three types of damping can 
be distinguished:
 – Strong damping (ζ > 1) – the system does not 

vibrate, striving for an equilibrium position;
 – Critical damping (ζ = 1) – the system does not 

vibrate, striving to reach the equilibrium in the 
shortest time possible; and,

 – Poor damping (0 < ζ < 1) – the system 
vibrates and the vibration amplitude decreases 
exponentially.

Taking into consideration the above equations 
(1–5) and the assumed simplicity of testing 
(yielding a small amount of data), it was decided 
to develop two methods of analysing the results of 
tests carried out on the measuring stand. When an 
encoder is used for measuring, only the value of the 
pendulum deflection angle over time is measured. 
However, it is possible to take measurements using 
an angular ruler and observing the maximum 
pendulum deflection angles in successive periods.

Measurement based on dissipated energy

Measurement based on dissipated energy consists 
in comparing the potential energy before the 
measurement and after a cycle of several pendulum 
motions.

E = m × g × ∆h,                        (7)

where:
m – the mass of the pendulum [kg],

g – the acceleration of gravity m
s2







,

∆h – the change in the height of the pendulum’s 
centre of gravity [m].

In the equilibrium position, the height of 
the pendulum’s centre of gravity is equal to the 
difference between the position of the pendulum’s 
axis of rotation (a) and its length (l). For a pendulum 
deflected from the equilibrium position by a known 
angle α, the height is equal to the following:

  h = a – (l × cosα) (8)

A simplification, consisting in omitting the 
weight of the tendon from which the load is 
suspended, is adopted here. The tendon’s weight is 
negligible in comparison with the weight suspended 
from it, and so its influence on the position of the 
centre of gravity can be neglected. The change in 
the energy of the pendulum is expressed by the 
following formula:

 ∆E = m × g × l(cosα1 – cosα2) (9)

In order to determine the friction path, the 
following transformed formula for the length of the 
arc of a circle was used:

s k= × ×3
2

                                    (10)

where:
k – the number of periods of oscillation of the 
pendulum,
r – the radius of the cylinder constituting the 
pendulum’s axis [m],
α0 + αk – the pendulum’s initial and final swing 
angle [rad].
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Finally, the formula for the value of the friction 
coefficient assumes the following form:
       

 (11)

where:  
m – the mass of the pendulum [kg],

g – the acceleration of gravity m
s2







,
  
γ – the angle of inclination of the support prism 
[rad],
s – the length of the friction path [m],
n – the number of contact nodes.

Fig. 3.  Schematic of stand with key dimensions marked
Rys. 3.  Schemat stanowiska z zaznaczonymi kluczowymi 

wymiarami

Measurement based on damping decrement

A damping decrement is a ratio of two successive 
amplitudes in the damped motion. Also a parameter 
called the logarithmic decrement of damping, which 
is the natural logarithm of a damping decrement, is 
often used.
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In the case of harmonic vibrations, the value of 
the damping decrement does not change over time. 
Thus, in order to determine the value of the damping 
decrement, it is enough to know the amplitudes of 
the mth and nth vibration of the system. In this 
case, the formula assumes the following form:

Λ =
−
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fig. 4.  deflection (x) versus time (t) for decaying 
vibrations, with marked amplitudes

Rys. 4.  Schemat węzła tarcia w rozpatrywanym stanowisku

Knowing the damping decrement, one can 
determine the difference in potential energy in 
the motion of the pendulum. By transforming the 
formulas, one obtains the following formula for the 
value of the friction coefficient:
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CONCLUSIONS

Combined with the stand for testing friction in 
pendular motion, the proposed measuring method 
enables a very quick comparison of the values of 
frictional resistance of various materials. In terms 
of tribology, the stand does not enable the precise 
measurement of the value of the static or kinetic 
friction coefficient, nor does it enable assigning 
a specific pressure value in the contact zone. The 
determined value of the friction coefficient is 
averaged for the following:
• A variable slip speed – the slip speed is 

maximum when the pendulum passes through 
the equilibrium point and equal to zero for 
extreme deflections; and,

• A variable pressure value in the contact zone 
– when the pendulum deflects to one side, the 
pressure force acting on the support from the 
opposite side increases, while the pressure 
acting on the support from the deflection side 
decreases.
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Despite certain limitations of the stand and 
the testing method, their greatest advantage is the 
speed and simplicity of testing sliding materials. 
When the resistances of different sliding materials 

are to be compared within an averaged range in 
a short time, the pendulum test is irreplaceable.
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