PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Conditions and limitations of digital satellite image pre-processing for the further 3D modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Today, 3D models of complex urban buildings are one of the most popular applications of 3D modeling. 3D models of complex urban buildings provide high data interpretation that accurately transfers information about objects or area changes and allows one to solve a number of applied tasks. The quality of the 3D models depends on the quality of the initial images and the method of the object recognition. First of all, the 3D-model building requires identification and classification building borders, which requires determination of the building roof form. The article reviews the existing classification and recognition methods for the 3D further modeling.
Rocznik
Strony
57--65
Opis fizyczny
Bibliogr. 10 poz. rys., tab.
Twórcy
  • O. Honchar Dnepropetrovsk National University Dnepropetrovsk, Ukraine
autor
  • National Metallurgical Academy of Ukraine Dnepropetrovsk, Ukraine
autor
  • Institute of Computer and Information Science, Czestochowa University of Technology Częstochowa, Poland
  • National Metallurgical Academy of Ukraine Dnepropetrovsk, Ukraine
  • Institute of Computer and Information Science, Czestochowa University of Technology Częstochowa, Poland
Bibliografia
  • [1] Lu D., Weng Q., A survey of image classification methods and techniques for improving classification performance, International Journal of Remote Sensing 2007, 28, 823-870.
  • [2] Tso B., Mather P.M., Classification Methods for Remotely Sensed Data, Taylor and Francis Inc., New York 2001.
  • [3] Hnatushenko V.V., Hnatushenko Vik.V., Kavats A.A., Shevchenko V.Ju., Pansharpening technology of high resolution multispectral and panchromatic satellite images, Scientific Bulletin of National Mining University, State Higher Educational Institution “National Mining University”, Dnipropetrovsk 2015, 4(148), 91-98.
  • [4] Hnatushenko V.V., Kavats О.О., Kibukevych I.O., Efficiency Determination of Scanner Data Fusion Methods of Space Multispectral Images, International Young Scientists Forum on Applied Physics «YSF-2015», September 29 - October 2, 2015, Dnipropetrovsk 2015.
  • [5] Hnatushenko V., Kavats A., Information technology increase spatial fragmentation of digital satellite images based on wavelet transformation and IСA, Proceedings of the National University “Lviv Polytechnic” series “Computer Science and Information Technology”, Lviv 2013, 28-32.
  • [6] Hay G.J., Castilla G., Object-based image analysis: strengths, weaknesses, opportunities and threats (SWOT), International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 2006, 36(4).
  • [7] Li M., Zang S., Zhang B., Li S., Wu C., A review of remote sensing image classification techniques: The role of spatio-contextual information, European Journal of Remote Sensing 2014, 47, 389-411.
  • [8] Pacifici F., Chini M., Emery W.J., A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification, Remote Sensing of Environment 2009, 113, 1276-1292.
  • [9] Zhen Z., Quackenbush L.J., Stehman S.V., Zhang L., Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification, International Journal of Remote Sensing 2013, 34(19), 6914-6930.
  • [10] Zeng C., Wang J., Automated Building Information Extraction and Evaluation from Highresolution Remotely Sensed Data, The University of Western Ontario, Electronic Thesis and Dissertation Repository, 2014.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81767d9a-a173-438a-9674-35ad4a237f01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.