Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study is to develop an autonomous epidemic virus model to depict the transmission of malicious computer code in active networks with pre-existing immunity and quarantine as effective control strategies. Due to the rapid spread of computer viruses and a delay in the update of antivirus signature database, the role of quarantine as a controlling mechanism has gained importance. The existence of disease free equilibrium point and its stability, as well as the existence of endemic equilibrium point and its stability are explored in terms of basic reproduction number R0. The model exhibits two equilibria points: disease free equilibrium and endemic equilibrium. Numerical simulations are performed to analyze the dynamics of the model in the presence of controlling mechanisms and in the absence of up-to-date antivirus software in terms of accuracy and convergence. The model interpretation invokes interesting inferences for effective quarantine strategy, with or without immunity and control mechanisms for security holes and zero-day vulnerabilities.
Wydawca
Czasopismo
Rocznik
Tom
Strony
249--273
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
- Department of Electrical Engineering, Capital University of Science and Technology, Islamabad, Pakistan
autor
- Department of Electrical Engineering, Capital University of Science and Technology, Islamabad, Pakistan
autor
- Department of Electrical Engineering, Capital University of Science and Technology, Islamabad, Pakistan
autor
- Department of Electrical Engineering, COMSATS Institute of Information Technology, Attock Campus, Attock, Pakistan
Bibliografia
- [1] Serazzi G, and Zanero S. Computer virus propagation models. In Performance Tools and Applications to Networked Systems. http://dblp.uni-trier.de/db/conf/rsfdgrc/index.html. Accessed: 2015-08-29.
- [2] Ren J, and Xu Y, A compartmental model for computer virus propagation with kill signals. Physica A: Statistical Mechanics and its Applications. In press. 2017 doi:10.1016/j.physa.2017.05.038.
- [3] Yang LX, Draief M, and Yang X. The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model. Physica A: Statistical Mechanics and its Applications, 450, 2016 pp.403-415. doi:10.1016/j.physa.2016.01.026.
- [4] Ren J, Xu Y, and Liu J. Investigation of dynamics of a virus-antivirus model in complex network. Physica A: Statistical Mechanics and its Applications, 421, 2015 pp. 533-540. doi:10.1016/j.physa.2014.11.01.
- [5] Zargar ST, Joshi J, and Tipper D. A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE communications surveys and tutorials, 2013;15(4):2046-2069. doi:10.1109/SURV.2013.031413.00127.
- [6] Wang X, Ni W, Zheng K, Liu RP, and Niu X. Virus Propagation Modeling and Convergence Analysis in Large-Scale Networks. IEEE Transactions on Information Forensics and Security, 2016;11(10):2241-2254. doi:10.1109/TIFS.2016.2581305.
- [7] Alhumaidan A, and Steggles J. Modelling and Analysing Qualitative Biological Models using Rewriting Logic. Fundamenta Informaticae, 2017;153(1-2):1-28. doi:10.3233/FI-2017-1529.
- [8] Mishra BK, and Pandey SK. Dynamic model of worm propagation in computer network. Applied Mathematical Modelling, 2014;38(7):2173-2179. doi.org/10.1016/j.apm.2013.10.046.
- [9] Xiao X, Fu P, Dou C, Li Q, Hu G, and Xia S. Design and analysis of SEIQR worm propagation model in mobile internet. Communications in Nonlinear Science and Numerical Simulation, 2017;43:341-350. doi:10.1016/j.cnsns.2016.07.012.
- [10] Cohen CJ, Scott KA, Huber MJ, Rowe SC, and Morelli F. October. Behavior recognition architecture for surveillance applications. In Applied Imagery Pattern Recognition Workshop, 2008. AIPR’08. 37th IEEE, 2008 pp. 1-8.
- [11] Zhang T, Wang X, Li Z, Guo F, Ma Y, and Chen W. A survey of network anomaly visualization. Science China Information Sciences, 2017;60(12):121101. doi:10.1007/s11432-016-0428-2.
- [12] Li C, and Liao X. The impact of hybrid quarantine strategies and delay factor on viral prevalence in computer networks. Mathematical Modelling of Natural Phenomena, 2016;11(4):105-119. doi:10.1051/mmnp/201611408.
- [13] Kephart JO, White SR, and Chess DM. Computers and epidemiology. IEEE Spectrum, 1993;30(5):20-26. doi:10.1109/6.275061.
- [14] Holder L, Cook D, Coble J, and Mukherjee M. Graph-based relational learning with application to security. Fundamenta Informaticae, 2005;66(1-2):83-101. URL https://content.iospress.com/articles/fundamenta-informaticae/fi66-1-2-05.
- [15] Lloyd AL, and May RM. How viruses spread among computers and people. Science, 2001:292(5520): 1316-1317. doi:10.1126/science.1061076.
- [16] Meisel M, Pappas V, and Zhang L. A taxonomy of biologically inspired research in computer networking. Computer Networks, 2010;54(6):901-916. doi:10.1016/j.comnet.2009.08.02.
- [17] Dong T, Wang A, and Liao X. Impact of discontinuous antivirus strategy in a computer virus model with the point to group. Applied Mathematical Modelling, 2016;40(4):3400-3409. doi:10.1016/j.apm.2015.10.029.
- [18] Rao YS, Rauta AK, Saini H, and Panda TC. Mathematical Model for Cyber Attack in Computer Network. International Journal of Business Data Communications and Networking (IJBDCN), 2017;13(1):58-65. doi:10.4018/IJBDCN.2017010105.
- [19] Braverman E, and Saker SH. Periodic solutions and global attractivity of a discrete delay host microparasite model. Journal of Difference Equations and Applications, 2010;16(7):789-806. doi:10.1080/10236190802452031.
- [20] Zhang CH, Yan XP, and Cui GH. Hopf bifurcations in a predator-prey system with a discrete delay and a distributed delay. Nonlinear Analysis: Real World Applications, 2010;11(5):4141-4153. doi:10.1016/j.nonrwa.2010.05.001.
- [21] Srivastava R, You L, Summers J, and Yin J. Stochastic vs. deterministic modeling of intracellular viral kinetics. Journal of Theoretical Biology, 2002;218(3):309-321. doi:10.1006/jtbi.2002.3078.
- [22] Braverman E, and Rodkina A. Stochastic difference equations with the Allee effect. 2016 arXiv https://arxiv.org/abs/1606.01928.
- [23] Berezansky L, and Braverman E. Boundedness and persistence of delay differential equations with mixed nonlinearity. Applied Mathematics and Computation, 2016;279:154-169. doi:10.1016/j.amc.2016.01.015.
- [24] Nelson PW, and Perelson AS. Mathematical analysis of delay differential equation models of HIV-1 infection. Mathematical biosciences, 2002;179(1):73-94. doi:10.1016/S0025-5564(02)00099-8.
- [25] Hethcote H, Zhien M, and Shengbing L. Effects of quarantine in six endemic models for infectious diseases. Mathematical Biosciences, 2002;180(1):141-160. doi:10.1016/S0025-5564(02)00111-6.
- [26] Mishra BK, and Jha N. SEIQRS model for the transmission of malicious objects in computer network. Applied Mathematical Modelling, 2010;34(3):710-715. doi:10.1016/j.apm.2009.06.011, doi:10.1016/j.amc.2011.03.041.
- [27] Mishra BK, and Pandey SK. Dynamic model of worms with vertical transmission in computer network. Applied Mathematics and Computation, 2011;217(21):8438-8446. doi:10.1016/j.amc.2011.03.041.
- [28] Busenberg S, and Cooke K. Vertically transmitted diseases: models and dynamics (Vol. 23). Springer Science and Business Media. 2012. ISBN:3642753019, 9783642753015.
- [29] Mishra BK, and Pandey SK. Fuzzy epidemic model for the transmission of worms in computer network. Nonlinear Analysis: Real World Applications, 2010;11(5):4335-4341. doi:10.1016/j.nonrwa.2010.05.018.
- [30] Jafelice RM, de Barros LC, Bassanezi RC, and Gomide F. Fuzzy modeling in symptomatic HIV virus infected population. Bulletin of Mathematical Biology, 2004;66(6):1597-1620. doi:10.1016/j.bulm.2004.03.002.
- [31] Haldar K, and Mishra BK. A mathematical model for a distributed attack on targeted resources in a computer network. Communications in Nonlinear Science and Numerical Simulation, 2014;19(9):3149-3160. doi:10.1016/j.cnsns.2014.01.028.
- [32] Wang X, He Z, Zhao X, Lin C, Pan Y, and Cai Z. Reaction-diffusion modeling of malware propagation in mobile wireless sensor networks. Science China Information Sciences, 2013;56(9):1-18. doi:10.1007/s11432-013-4977-4.
- [33] Mishra BK, and Pandey SK. Effect of anti-virus software on infectious nodes in computer network: a mathematical model. Physics Letters A, 2012;376(35):2389-2393. doi:10.1016/j.physleta.2012.05.061.
- [34] Dong T, Liao X, and Li H. April. Stability and Hopf bifurcation in a computer virus model with multistate antivirus. In Abstract and Applied Analysis (Vol. 2012). Hindawi Publishing Corporation, 2012. doi:10.1155/2012/841987.
- [35] Nikolich Žugich J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nature Reviews Immunology, 2008;8(7):512-522. URL https://www.nature.com/articles/nri2318.
- [36] Subramanya SR, and Lakshminarasimhan N. Computer viruses. IEEE potentials, 2001;20(4):16-19. doi:10.1109/45.969588.
- [37] Wang Y, Jin Z, Yang Z, Zhang ZK, Zhou T, and Sun GQ. Global analysis of an SIS model with an infective vector on complex networks. Nonlinear Analysis: Real World Applications, 2012;13(2):543-557. doi:10.1016/j.nonrwa.2011.07.033.
- [38] Wang F, Zhang Y, Wang C, Ma J, and Moon S. Stability analysis of a SEIQV epidemic model for rapid spreading worms. Computers and Security, 2010;29(4):410-418. doi:10.1016/j.cose.2009.10.002.
- [39] Zou CC, Towsley D, and Gong W. On the performance of Internet worm scanning strategies. Performance Evaluation, 2006;63(7):700-723. doi:10.1016/j.peva.2005.07.032.
- [40] Hethcote HW. The mathematics of infectious diseases. SIAM review, 2000:42(4):599-653.
- [41] Freeman WJ. Mass action in the nervous system. 1975. doi:10.1137/S0036144500371907.
- [42] Berryman AA. The Orgins and Evolution of Predator? Prey Theory. Ecology, 1992;73(5):1530-1535. doi:10.2307/1940005.
- [43] Barnett S. September. A new formulation of the Liénard-Chipart stability criterion. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 70, No. 2, pp. 269-274). 1997 Cambridge University Press. doi:10.1017/S0305004100049872.
- [44] Hethcote H, Zhien M, and Shengbing L. Effects of quarantine in six endemic models for infectious diseases. Mathematical Biosciences, 2002;180(1):141-160. doi:10.1016/S0025-5564(02)00111-6.
- [45] Bilge L, and Dumitras T. October. Before we knew it: an empirical study of zero-day attacks in the real world. In Proceedings of the 2012 ACM conference on Computer and communications security (pp. 833-844). ACM. 2012. doi:10.1145/2382196.2382284.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-816f88d6-5e3b-48aa-8e47-f7ae50c2b614