PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Machine learning-based fault detection in transmission lines: A comparative study with random search optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Regular and fast monitoring of transmission line faults is of immense importance for the uninterrupted transmission of electrical energy. Rapid detection and classification of faults accelerate the repair process of the system, reducing downtime and increasing the efficiency and reliability of the power system. In this context, machine learning stands out as an effective solution for transmission line fault detection. In this study, fault detection is performed using machine learning techniques such as decision trees, logistic regression, and support vector machines. Random search hyperparameter optimization was applied to improve the performance of the models. The models were trained and tested with data from fault-free and faulted cases. While the support vector machines model showed the lowest performance with 74.19% test accuracy, the logistic regression model achieved 97.01% test accuracy. The decision tree model showed the best performance with low error rates. Error measures such as root mean square error (RMSE) and mean absolute error (MAE) were also used to evaluate the predictive power of the models. This research demonstrates how machine learning-based methods can be effectively used in the detection of transmission line faults and presents the performance of different algorithms in a comparative manner.
Rocznik
Strony
art. no. e153229
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Dicle University, Silvan Vocational School, Electrical Department, Diyarbakır, Türkiye
Bibliografia
  • [1] S.P. Ojha, B.K. Panigrahi, B. Sahu, and G. Dani, “Identification of double line to ground fault in electrical power transmission line using artificial neural network,” 2nd Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology, 2022, pp. 1–5, doi: 10.1109/ODICON54453.2022.10010224.
  • [2] S. Kumar, A.K. Singh, and M.A. Kalam, “Fault prediction in transmission line using GOOSE protocol and artificial neural network,” Fourth International Conference on Electrical, Computer and Communication Technologies, 2021, pp. 1–7, doi: 10.1109/ICECCT52121.2021.9616801.
  • [3] E.S. Prakash, “Electrical fault detection and classification,” Kaggle, 2021. [Online].Available: https://www.kaggle.com/datasets/esathyaprakash/electrical-fault-detection-and-classification (Accessed: Jan. 10, 2024).
  • [4] M.M. Taheri, H. Seyedi, and B. Mohammadi-ivatloo, “DT-based relaying scheme for fault classification in transmission lines using MODP,” IET Gener. Transm. Distrib., vol. 11, no. 11, pp. 2796–2804, 2017, doi: 10.1049/iet-gtd.2016.1821.
  • [5] A. Prasad, J.B. Edward, and K. Ravi, “A review on fault classification methodologies in power transmission systems,” J. Electr. Syst. Inf. Technol., vol. 5, no. 1, pp. 48–66, 2018, doi: 10.1016/j.jesit.2017.01.004.
  • [6] S. Kumar, M. Swamy, and V. Venkatesh, “Artificial neural network based method for location and classification of faults on a transmission lines,” Int. J. Sci. Res. Publ., vol. 4, no. 6, pp. 1–6, 2014.
  • [7] M. Gowrishankar, P. Nagaveni, and P. Balakrishnan, “Transmission line fault detection and classification using discrete wavelet transformand artificial neural network,” Middle-East J. Sci. Res., vol. 24, no. 4, pp. 1112–1121, 2016, doi: 10.5829/idosi.mejsr.2016.24.04.23063.
  • [8] D.F. Leite, M.B. Hell, P. Costa, and F. Gomide, “Real-time fault diagnosis of nonlinear systems,” Nonlinear Anal.-Theory Methods Appl., vol. 71, no. 12, pp. 2665–2673, 2009, doi: 10.1016/j.na.2009.06.037.
  • [9] F.M. Albatsh et al., “A comparative analysis of line stability indices for dynamic voltage stability,” International Conference on Engineering Technology and Technopreneurship, 2017, pp. 1–6, doi: 10.1109/ICE2T.2017.8215949.
  • [10] S. Choudhury, N. Khandelwal, and T.P. Dash, “A unified scheme of PSS and SVC for voltage profile improvement in electrical grid network,” 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology, 2021, pp. 1–6, doi: 10.1109/ODICON50556.2021.9428989.
  • [11] N. Shekhawat, A.K. Gupta, and S. Kumar, “Voltage stability assessment using line stability indices,” 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering, 2018, pp. 1–4, doi: 10.1109/ICRAIE.2018.8710435.
  • [12] R. Kyomugisha, C. Muriithi, and M. Edimu, “Voltage stability enhancement of the Uganda power system network,” 2021 IEEE PES/IAS Power Africa, 2021, pp. 1–5, doi: 10.1109/PowerAfrica52236.2021.9543385.
  • [13] S. Kanwal and S. Jiriwibhakorn, “Artificial intelligence-based faults identification, classification, and localization techniques in transmission lines – a review,” IEEE Latin Am. Trans., vol. 21, no. 12, pp. 1291–1305, 2023, doi: 10.1109/TLA.2023.10305233.
  • [14] S. Jiriwibhakorn, “Critical clearing time prediction for power transmission using an adaptive neuro-fuzzy inference system,” IEEE Access, vol. 11, pp. 142100–142110, 2023, doi: 10.1109/ACCESS.2023.3341968.
  • [15] O.F. Goni et al., “Fast and accurate fault detection and classification in transmission lines using extreme learning machine,” e-Prime-Adv. Electr. Eng. Electron. Energy, vol. 3, pp. 1–12, 2023, doi: 10.1016/j.prime.2023.100107.
  • [16] S. Upadhyay, S. Kapoor, and R. Choudhary, “Fault classification and detection in transmission lines using ANN,” 2018 International Conference on Inventive Research in Computing Applications, 2018, pp. 1029–1034, doi: 10.1109/ICIRCA.2018.8597294.
  • [17] E. Obi, A. Ezechukwu, and C.N. Ezema, “An extended ANNbased high-speed accurate transmission line fault location for double phase to earth fault on non-direct-ground,” Int. J. Eng. Sci. Technol., vol. 1, no. 1, pp. 31–47, 2019, doi: 10.29121/IJOEST.v1.i1.2017.04.
  • [18] Y. Hong and M. Cabatac, “Fault detection, classification, and location by static switch in microgrids using wavelet transform and Taguchi-based artificial neural network,” IEEE Syst. J., vol. 4, no. 2, pp. 2725–2735, 2019, doi: 10.1109/JSYST.2019.2925594.
  • [19] S. Affijulla and P. Tripathy, “A robust fault detection and discrimination technique for transmission lines,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6348–6358, 2017, doi: 10.1109/TSG.2017.2709546.
  • [20] A.P. Vaidya and A.V. Prasad, “Distance protection scheme for long transmission line protection considering the effect of fault resistance using ANN approach,” Int. J. Electr. Electron. Eng., vol. 1, no. 3, pp. 62–66, 2012, doi: 10.47893/IJEEE.2013.1044.
  • [21] Z. Bo Tang, “Adaptive partitioned random search to global optimization,” IEEE Trans. Autom. Control, vol. 39, no. 11, pp. 2235–2244, Nov. 1994, doi: 10.1109/9.333768.
  • [22] A. Akhikpemelo, M. Evbogbai, and M. Okundamiya, “Fault detection on a 132 kV transmission line using artificial neural network,” Int. Rev. Electr. Eng., vol. 14, no. 3, pp. 220–225, 2019, doi: 10.15866/iree.v14i3.17054.
  • [23] E. Aslan, “Temperature prediction and performance comparison of permanent magnet synchronous motors using different machine learning techniques for early failure detection,” Eksploat. Niezawodn., 2024, doi: 10.17531/ein/192164.
  • [24] A. Adamkiewicz and P. Nikończuk, “An attempt at applying machine learning in diagnosing marine ship engine turbochargers,” Eksploat. Niezawodn., vol. 24, no. 4, pp. 795–804, 2022, doi: 10.17531/ein.2022.4.19.
  • [25] M. Parsi, P. Crossley, P.L. Dragotti, and D. Cole, “Wavelet based fault location on power transmission lines using real-world travelling wave data,” Electr. Power Syst. Res., vol. 186, p. 106261, 2020, doi: 10.1016/j.epsr.2020.106261.
  • [26] E. Aslan, “Prediction and comparative analysis of emissions from gas turbines using random search optimization and different machine learning-based algorithms,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e151956, 2024, doi: 10.24425/bpasts.2024.151956.
  • [27] H. Sivaprasad, M.R. Lekkala, M. Latheef, J. Seo, K. Yoo, and C. Jin, “Fatigue damage prediction of top tensioned riser subjected to vortex-induced vibrations using artificial neural networks,” Ocean Eng., vol. 15, no. 268, p. 113393, 2023, doi: 10.1016/j.oceaneng.2022.113393.
  • [28] E. Aslan and Y. Özüpak, “Detection of road extraction from satellite images with deep learning method,” Cluster Comput. vol. 28, pp. 72–83, 2025, doi: 10.1007/s10586-024-04880.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-816e3d7c-859c-4231-a244-bfede0ea73c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.