PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Linear and nonlinear ΤM polarized surface waves in anisotropic metamaterials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The metamaterial with an effective permeability and/or permittivity tensor having elements of different magnitudes and signs is termed as the anisotropic metamaterial. The hyperbolic metamaterial may be considered as a subclass of the anisotropic metamaterial. The dispersion relation for the transverse magnetic surface waves at the interface between a nonlinear dielectric material and an anisotropic metamaterial is derived using the parallel uniaxial approximation of the permittivity tensor. This dispersion relations can be linearized by taking the nonlinear coefficient to be zero. Dispersion curves are plotted for both the linear and the nonlinear cases and are analyzed and compared in different frequency regions.
Czasopismo
Rocznik
Strony
473--486
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
  • Physics Department, Punjab University, Lahore 545900, Pakistan
Bibliografia
  • [1] CAI W., SHALAEV V.M., Optical Metamaterials, Springer, New York, NY, 2010.
  • [2] SHALAEV V.M., Optical negative refractive-index metamaterials, Nature Photonics 1, 2007, pp. 41–48, DOI: 10.1038/nphoton.2006.49.
  • [3] ZUOJIA WANG, FENG CHENG, WINSOR T., YONGMIN LIU, Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications, Nanotechnology 27(41), 2016, article ID 412001, DOI: 10.1088/0957-4484/27/41/412001.
  • [4] SHEKHAR P., ΑTKINSON J., JACOB Ζ., Hyperbolic metamaterials: fundamentals and applications, Nano Convergence 1, 2014, article ID 14, DOI: 10.1186/s40580-014-0014-6.
  • [5] XIUJUAN ZHANG, YING WU, Effective medium theory for anisotropic metamaterials, Scientific Reports 5, 2015, p. 7892, DOI: 10.1038/srep07892.
  • [6] YUCHU HE, ELEFTHERIADES G.V., Anisotropic metamaterial as an antirefiection layer at extreme angles, IEEE Transactions on Antennas and Propagation 65(8), 2017, pp. 4102–4114, DOI: 10.1109/ TAP.2017.2710213.
  • [7] XIAOMING ZHOU, GENGKAI HU, Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass, Applied Physics Letters 98(26), 2011, article ID 263510, DOI: 10.1063/1.3607277.
  • [8] ZHEPING SHAO, YIHAO YANG, ZUOJIA WANG, MUHIDDEEN YAHAYA, BIN ZHENG, SHAHRAM DEHDASHTI, HUAPING WANG, HONGSHENG CHEN, Manipulating surface plasmon polaritons with infinitely anisotropic metamaterials, Optics Express 25(9), 2017, pp. 10515–10526, DOI: 10.1364/OE.25.010515.
  • [9] LI G.Χ., TAM H.L., WANG F.Y., CHEAH Κ.W., Superlens from complementary anisotropic metamaterials, Journal of Applied Physics 102(11), 2007, article ID 116101, DOI: 10.1063/1.2817538.
  • [10] FANG Α., ΚOSCHNY T., SOUKOULIS C.M., Optical anisotropic metamaterials: negative refraction and focusing, Physical Review B 79(24), 2009, article ID 245127, DOI: 10.1103/PhysRevB.79.245127.
  • [11] PRATAP D., RAMAKRISHNA S.Α., POLLOCK J.G., IYER Α.Κ., Anisotropic metamaterial optical fibers, Optics Express 23(7), 2015, pp. 9074–9085, DOI: 10.1364/OE.23.009074.
  • [12] WEI XIANG JIANG, JESSIE YAO CHIN, TIE JUN CUI, Anisotropic metamaterial devices, Materials Today 12(12), 2009, pp. 26–33, DOI: 10.1016/S1369-7021(09)70314-1.
  • [13] FERNÁNDEZ-NÚÑEZ I., BULASHENKO O., Anisotropic metamaterial as an analogue of a black hole, Physics Letters A 380(1–2), 2016, pp. 1–8, DOI: 10.1016/j.physleta.2015.10.043.
  • [14] OTHMAN M., GUCLU C., CAPOLINO F., Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon- near-zero condition, Journal of Nanophotonics 7(1), 2013, article ID 073089, DOI: 10.1117/1.JNP.7.073089.
  • [15] OTHMAN M.A.K., GUCLU C., CAPOLINO F., Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption, Optics Express 21(6), 2013, pp. 7614–7632, DOI: 10.1364/OE.21.007614.
  • [16] IORSH I.V., MUKHIN I.S., SHADRIVOV I.V., BELOV P.Α., ΚIVSHAR Y.S., Hyperbolic metamaterials based on multilayer graphene structures, Physical Review B 87(7), 2013, article ID 075416, DOI: 10.1103/ PhysRevB.87.075416.
  • [17] GARCÍA-CHOCANO V.M., CHRISTENSEN J., SÁNCHEZ-DEHESA J., Νegative refraction and energy funneling by hyperbolic materials: an experimental demonstration in acoustics, Physical Review Letters 112(14), 2014, article ID 144301, DOI: 10.1103/PhysRevLett.112.144301.
  • [18] WEST P.R., ΚINSEY N., FERRERA M., ΚILDISHEV Α.V., SHALAEV V.M., BOLTASSEVA Α., Adiabatically tapered hyperbolic metamaterials for dispersion control of high-k waves, Nano Letters 15(1), 2015, pp. 498–505, DOI: 10.1021/nl5038352.
  • [19] SMOLYANINOV I.I., Holographic duality in nonlinear hyperbolic metamaterials, Journal of Optics 16(7), 2014, article ID 075101, DOI: 10.1088/2040-8978/16/7/075101.
  • [20] ΑLI M.Ζ., BHATTI Α.Α., HAQUE Q., MAHMOOD S., Global transmission diagrams for evanescent waves in a nonlinear hyperbolic metamaterial, Chinese Optics Letters 13(9), 2015, article ID 090601.
  • [21] YOU-CHIA CHANG, CHE-HUNG LIU, CHANG-HUA LIU, SIYUAN ZHANG, MARDER S.R., NARIMANOV E.E., ZHAOHUI ZHONG, NORRIS T.B., Realization of mid-infrared graphene hyperbolic metamaterials, Nature Communications 7, 2016, article ID 10568, DOI: 10.1038/ncomms10568.
  • [22] GRIC T., Surface-plasmon-polaritons at the interface of νanostructured metamaterials, Progress In Electromagnetics Research M 46, 2016, pp. 165–172, DOI: 10.2528/PIERM15121605.
  • [23] ΑLSHITS V.I., LYUBIMOV V.N., Dispersionless surface polaritons in the vicinity of different sections of optically uniaxial crystals, Physics of the Solid State 44(2), 2002, pp. 386–390, DOI: 10.1134/1.1451033.
  • [24] ELDLIO M., CHE F., CADA M., Optical semiconductor surface-plasmon dispersion including losses using the Drude–Lorentz model, Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II WCECS 2012, October 24–26, 2012, San Francisco, USA.
  • [25] DYAKONOV M.I., Νew type of electromagnetic wave propagating at an interface, Journal of Experimental and Theoretical Physics 67(4), 1988, p. 714.
  • [26] TAKAYAMA O., CRASOVAN L.C., JOHANSEN S.Κ., MIHALACHE D., ΑRTIGAS D., TORNER L., Dyakonov surface waves: a review, Electromagnetics 28(3), 2008, pp. 126–145, DOI: 10.1080/02726340801 921403.
  • [27] MIRETA J.J., SORNÍ J.Α., NASERPOUR M., ΑRDAKANI Α.G., ZAPATA-RODRÍGUEZ C.J., Nonlocal dispersion anomalies of Dyakonov-like surface waves at hyperbolic media interfaces, Photonics and Nanostructures – Fundamentals and Applications 18, 2016, pp. 16–22, DOI: 10.1016/j.photonics.20 15.12.001.
  • [28] ZAPATA-RODRÍGUEZ C.J., MIRET J.J., VUKOVIĆ S., BELIĆ M.R., Engineered surface waves in hyperbolic metamaterials, Optics Express 21(16), 2013, pp. 19113–19127, DOI: 10.1364/OE.21.019113.
  • [29] YUANJIANG XIANG, JUN GUO, XIAOYU DAI, SHUANGCHUN WEN, DINGYUAN TANG, Engineered surface Bloch waves in graphene based hyperbolic metamaterials, Optics Express 22(3), 2014, pp. 3054–3062, DOI: 10.1364/OE.22.003054.
  • [30] JACOB Ζ., NARIMANOV E.E., Optical hyperspace for plasmons: Dyakonov states in metamaterials, Applied Physics Letters 93(22), 2008, article ID 221109, DOI: 10.1063/1.3037208.
  • [31] GRIC T., CADA M., PISTORA J., Propagation of surface waves formed at the interface between hyperbolic metamaterial and highly doped semiconductor, Optical and Quantum Electronics 48(4), 2016, article ID 237, DOI: 10.1007/s11082-016-0523-0.
  • [32] TAKAYAMA O., SHKONDIN E., PANAH M.E.Α., REPÄN T., MALUREANU R., JENSEN F., LAVRINENKO Α.V., Surface waves on metal-dielectric metamaterials, [In] 2016 18th International Conference on Transparent Optical Networks (ICTON), 2016, DOI: 10.1109/ICTON.2016.7550550.
  • [33] ΑLI M.Ζ., Nonlinear surface waves in photonic hypercrystals, Physics Letters A 381(32), 2017, pp. 2643–2647, DOI: 10.1016/j.physleta.2017.05.060.
  • [34] LEUNG Κ.M., Propagation of nonlinear surface polaritons, Physical Review A 31(2), 1985, p. 1189, DOI: 10.1103/PhysRevA.31.1189.
  • [35] YU M.Y., Surface polaritons in nonlinear media, Physical Review A 28(3), 1983, p. 1855, DOI: 10.1103/ PhysRevA.28.1855.
  • [36] LANGBEIN U., LEDERER F., MIHALACHE D., MAZILU D., Νonlinear TM-polarized waves in non-Kerr media, Physica 145C, 1987, p. 377.
  • [37] BOARDMAN Α.D., MARADUDIN Α.Α., STEGEMAN G.I., TWARDOWSKI T., WRIGHT E.M., Exact theory of nonlinear p-polarized optical waves, Physical Review A 35(3), 1987, p. 1159, DOI: 10.1103/Phys RevA.35.1159.
  • [38] LEUNG Κ.M., p-polarized nonlinear surface polaritons in materials with intensity-dependent dielectric functions, Physical Review B 32(8), 1985, p. 5093, DOI: 10.1103/PhysRevB.32.5093.
  • [39] STEGEMAN G.I., SEATON C.T., ΑRIYASU J., WALLIS R.F., MARADUDIN Α.Α., Νonlinear electromagnetic waves guided by a single interface, Journal of Applied Physics 58(7), 1985, p. 2453, DOI: 10.1063/ 1.335920.
  • [40] BOYD R.W., FISCHER G.L., Nonlinear optical materials, [In] Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière [Eds.], 2001, pp. 6237–6244, DOI: 10.1016/B0-08-043152-6/01107-4.
  • [41] NARIMANOV E.E., Photonic hypercrystals, Physical Review Χ 4(4), 2014, article ID 041014, DOI: 10.1103/PhysRevX.4.041014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-816a7dcf-9619-4db5-82f7-83665a06a431
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.