PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of hard segments content on thermal, morphological and mechanical properties of homo and co-polyurethanes: a comparative study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This work aims to study the effect of hard segments (HS) content on the thermal, morphological and mechanical properties of polyurethane polymers based on 1.5 pentanediol chain extenders. Design/methodology/approach: Two comparable series of polyurethanes were synthesised including homo-polyurethane (Homo-PU) and copolyurethane (Co-PU). The Homo-PU consists of 100% wt. of hard segments (HS). The Co-PU composes of 30%wt. of soft segments (SS) using a poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) material. The effect of hard segments content on the morphology of Homo-PU and Co-PU was also studied. Findings: The Homo-PU and Co-PU materials show three distinct degradation steps with the higher thermal stability of the Co-PU compared to the Homo-PU. Enthalpy of fusion (ΔHM) and heat capacity (ΔCP) of polyurethane (PU) samples decrease with decreasing HS content. In the cooling cycle, the higher exothermic peak of crystallization is observed in the Co-PU. In contrast, the cold crystalline peak is observed in the 2nd heating cycle of the Homo-PU. Melting temperature (TM) increases with increasing SS content. Glass transition temperature (Tg) of PU samples shifts to higher temperature with increasing HS content. Storage modulus (E’) of the Co-PU is higher than E’ of the Homo-PU. All N-H groups in PU samples are hydrogen-bonded, whilst most of the C=O groups are hydrogen-bonded. The degree of hydrogen bonding in PU samples decreases with decreasing HS content. The Homo-PU shows better hardness than the Co-PU and higher brittleness at low temperature. WAXS results of the Homo-PU display better crystallinity compared to the Co-PU. Research limitations/implications: The main challenge in this work was how to synthesis Thermoplastic polyurethanes (TPUs) with specific properties to compete other common polymer such as Polyamides (PA) and Polypropylene (PP). Practical implications: Thermoplastic polyurethanes (TPUs) can be used in various application such as backageing, foot,automobiles and constructions. Originality/value: A new type of TPUs that synthesized using different type of chain extender (1.5 pentanediol). Two different types of TPUs were synthesized one contained 30% SS and 70% HS and a second one contained 100% HS.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • Department of Polymer Engineering and Petrochemical Industries, Faculty of Materials Engineering, University of Babylon, Hilla, Iraq
autor
  • Department of Materials Engineering, Faculty of Engineering, University of Kufa, Najaf, Iraq
autor
  • Department of Chemical Engineering, Faculty of Engineering, University of Babylon, Hilla, Iraq
  • Department of Ceramics and Building Materials Engineering, Faculty of Materials Engineering, University of Babylon, Hilla, Iraq
autor
  • Department of Materials, The University of Manchester, Oxford Road M13 9PL, Manchester, UK
Bibliografia
  • [1] S.C. Tjong, S.A. Xu, R.K.-Y. Li, Y.W. Mai, Short glass fiber-reinforced polyamide 6,6 composites toughened with maleated SEBS, Composites Science and Technology 62/15 (2002) 2017-2027. DOI: https://doi.org/10.1016/S0266-3538(02)00140-9
  • [2] H. Wittich, M. Evstatiev, E. Bozwelieva, K. Friedrich, S. Fakirov, Effect of crystallinity on the interlaminar fracture toughness of continuous glass fiber-polyamide composites, Advanced Composite Materials 2/2 (1992) 135-152. DOI: https://doi.org/10.1163/156855192X00161
  • [3] J.H. Chen, E. Schulz, J. Bohse, G. Hinrichsen, Effect of fibre content on the interlaminar fracture toughness of unidirectional glass-fibre/polyamide composite, Composites Part A: Applied Science and Manufac-turing 30/6 (1999) 747-755. DOI: https://doi.org/10.1016/S1359-835X(98)00188-2
  • [4] Y. Mi, X. Chen, Q. Guo, Bamboo fiber-reinforced polypropylene composites: Crystallization and inter-facial morphology, Journal of Applied Polymer Science 64/7 (1997) 1267-1273. DOI: https://doi.org/10.1002/(SICI)1097- 4628(19970516)64:7%3C1267::AID-APP4%3E3.0.CO;2-H
  • [5] M. Albozahid, H.Z. Naji, Z.K. Alobad, A. Saiani, Effect of OMMT reinforcement on morphology and rheology properties of polyurethane copolymer nano-composites, Journal of Elastomers and Plastics (2021) 1-23 (published online). DOI: https://doi.org/10.1177%2F00952443211006160
  • [6] K. Kojio, M. Furukawa, S. Motokucho, M. Shimada, M. Sakai, Structure-mechanical property relationships for poly(carbonate urethane) elastomers with novel soft segments, Macromolecules 42/21 (2009) 8322-8327. DOI: https://doi.org/10.1021/ma901317t
  • [7] L.S.T.J. Korley, B.D. Pate, E.L. Thomas, P.T. Hammond, Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes, Polymer 47/9 (2006) 3073-3082. DOI: https://doi.org/10.1016/j.polymer.2006.02.093
  • [8] B.S. Lee, B.C. Chun, Y. Chung, K. Il Sul, J.W. Cho, Structure and Thermomechanical Properties of Polyurethane Block Copolymers with Shape Memory Effect, Macromolecules 34/18 (2001) 6431-6437. DOI: https://doi.org/10.1021/ma001842l
  • [9] S.-H. Kang, D.-C. Ku, J.-H. Lim, Y.-K. Yang, N.-S. Kwak, T.-S. Hwang, Characterization for Pyrolysis of Thermoplastic Polyurethane by Thermal Analyses, Macromolecular Research 13/3 (2005) 212-217. DOI: https://doi.org/10.1007/BF03219054
  • [10] A.A. Tsiotas, The role of the chain extender on the phase behaviour and morphology of high hard block – Structures – Properties, PhD Thesis, University of Manchester, Manchester, UK, 2012.
  • [11] Z.-J. Wang, D.-J. Kwon, G.-Y. Gu, H.-S. Kim, D.-S. Kim, C.-S. Lee, K.L. DeVries, J.-M. Park, Mechanical and interfacial evaluation of CNT/polypropylene composites and monitoring of damage using electrical resistance measurements, Composites Science and Technology 81 (2013) 69-75. DOI: https://doi.org/10.1016/j.compscitech.2013.04.001
  • [12] D. Braun, H. Cherdron, M. Rehahn, H. Ritter, B. Voit, Polymer Synthesis: Theory and Practice Fundamentals, Methods, Experiments, 4th Edition, Springer‒Verlag, Berlin‒Heidelberg‒New York, 2005. DOI: https://doi.org/10.1007/978-3-642-28980-4
  • [13] C.S. Paik Sung, C.B. Hu, C.S. Wu, Properties of Segmented Poly(urethaneureas) Based on 2,4-Toluene Diisocyanate. 1. Thermal Transitions, X-ray Studies, and Comparison with Segmented Poly(urethanes), Macromolecules 13/1 (1980) 111-116. DOI: https://doi.org/10.1021/ma60073a022
  • [14] C.G. Seefried, J.V. Koleske, F.E. Critchfield, Thermo-plastic urethane elastomers. III. Effects of variations in isocyanate structure, Journal of Applied Polymer Science 19/12 (1975) 3185-3191. DOI: https://doi.org/10.1002/app.1975.070191204
  • [15] C.G. Seefried, J.V. Koleske, F.E. Critchfield, Thermoplastic urethane elastomers. II. Effects of variations in hard-segment concentration, Journal of Applied Polymer Science 19/9 (1975) 2503-2513. DOI: https://doi.org/10.1002/app.1975.070190913
  • [16] D.S. Huh, S.L. Cooper, Dynamic mechanical properties of polyurethane block polymers, Polymer Engineering and Science 11/5 (1971) 369-376. DOI: https://doi.org/10.1002/pen.760110504
  • [17] M. Albozahid, S.A. Habeeb, N.A.I. Alhilo, A. Saiani, The impact of graphene nanofiller loading on the morphology and rheology behaviour of highly rigid polyurethane copolymer, Materials Research Express 7/12 (2020) 125304. DOI: https://doi.org/10.1088/2053-1591/aba5ce
  • [18] M.Herrera, G. Matuschek, A. Kettrup, Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI, Polymer Degradation and Stability 78/2 (2002) 323-331. DOI: https://doi.org/10.1016/S0141-3910(02)00181-7
  • [19] C. Nedolisa, Designing High Hard Block Content Thermoplastic Polyurethane (TPU) Resins for Composite Applications, PhD Thesis, University of Manchester, Manchester, UK, 2015.
  • [20] L. Rueda-Larraz, B.F. D’Arlas, A. Tercjak, A. Ribes, I. Mondragon, A. Eceiza, Synthesis and microstructure-mechanical property relationships of segmented polyurethanes based on a PCL-PTHF-PCL block copolymer as soft segment, European Polymer Journal 45/7 (2009) 2096-2109. DOI: https://doi.org/10.1016/j.eurpolymj.2009.03.013
  • [21] R.G.J.C. Heijkants, R.V. van Calck, T.G. van Tienen, J.H. de Groot, P. Buma, A.J. Pennings, R.P.H. Veth, A.J. Schouten, Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(caprolactone) and 1,4-butane diisocyanate with uniform hard segment, Biomaterials 26/20 (2005) 4219-4228. DOI: https://doi.org/10.1016/j.biomaterials.2004.11.005
  • [22] A. Saiani, W.A. Daunch, H. Verbeke, J. Leenslag, J.S. Higgins, Origin of Multiple Melting Endotherms in a High Hard Block Content Polyurethane. 1. Thermo-dynamic Investigation, Macromolecules 34/26 (2001) 9059-9068. DOI: https://doi.org/10.1021/ma0105993
  • [23] A. Saralegi, L. Rueda, B. Fernández-D’Arlas, I. Mondragon, A. Eceiza, M.A. Corcuera, Thermoplastic polyurethanes from renewable resources: Effect of soft segment chemical structure and molecular weight on morphology and final properties, Polymer International 62/1 (2013) 106-115. DOI: https://doi.org/10.1002/pi.4330
  • [24] A. Saiani, C. Rochas, G. Eeckhaut, W.A. Daunch, X.J. Leenslag, J.S. Higgins, Origin of Multiple Melting Endotherms in a High Hard Block Content Poly-urethane. 2. Structural Investigation, Macromolecules 37/4 (2004) 1411-1421. DOI: https://doi.org/10.1021/ma034604+
  • [25] J.P. Latere Dwan’isa, A.K. Mohanty, M. Misra, L.T. Drzal, M. Kazemizadeh, Biobased polyurethane and its composite with glass fiber, Journal of Materials Science 39/6 (2004) 2081-2087. DOI: https://doi.org/10.1023/B:JMSC.0000017770.55430.fb
  • [26] B.K. Kim, Y.J. Shin, S.M. Cho, H.M. Jeong, Shape-memory behavior of segmented polyurethanes with an amorphous reversible phase: the effect of block length and content, Journal of Polymer Science. Part B: Polymer Physics 38/20 (2000) 2652-2657. DOI: https://doi.org/10.1002/1099- 0488(20001015)38:20%3C2652::AID-POLB50%3E3.0.CO;2-3
  • [27] R.W. Seymour, G.M. Estes, S.L. Cooper, Infrared Studies of Segmented Polyurethan Elastomers. I. Hydrogen Bonding, Macromolecules 3/5 (1970) 579- 583. DOI: https://doi.org/10.1021/ma60017a021
  • [28] J. Bandekar, S. Klima, FT-IR spectroscopic studies of polyurethanes ‒ Part II. Ab initio quantum chemical studies of the relative strengths of ‘carbonyl’ and ‘ether’ hydrogen-bonds in polyurethanes, Spectro-chimica Acta Part A: Molecular Spectroscopy 48/10 (1992) 1363-1370. DOI: https://doi.org/10.1016/0584- 8539(92)80142-J
  • [29] Z. Ren, D. Ma, X. Yang, H-bond and conformations of donors and acceptors in model polyether based polyurethanes, Polymer 44/20 (2003) 6419-6425. DOI: https://doi.org/10.1016/S0032-3861(03)00726-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8169da82-ecd2-4410-8b7e-bb48a913517e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.