Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The efficiency of the assembly process is influenced by a wide range of different parameters. For their optimal setting, a thorough comprehensive analysis of the entire assembly process and identification of shortcomings in the form of bottlenecks or insufficient capacity utilization of assembly workplaces is necessary. As part of the presented paper, the use of the FMEA method in combination with dynamic simulation for analysis of the efficiency of its operation is presented on the example of a real assembly process. The obtained results showed the existence of a bottleneck in the supply area carried out by means of a single AGV set. The subsequent proposed solution, which consisted in the introduction of the use of another AGV set, brought an increase in the efficiency of individual assembly workplaces from the original values in the range of 75% to 85% to the level of 87% to 98%.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
249--256
Opis fizyczny
Bibliogr. 15 poz., fig.
Twórcy
autor
- Technical University of Kosice, Letná 1/9, 040 01 Košice, Slovakia
autor
- The College of Logistics, Palackého 1381, 750 02 Přerov, Czech Republic
autor
- Technical University of Kosice, Letná 1/9, 040 01 Košice, Slovakia
autor
- Technical University of Kosice, Letná 1/9, 040 01 Košice, Slovakia
Bibliografia
- 1. Coelho F., R. Macedo, S. Relvas, A. Barbosa-Povoa, Simulation of in-house logistics operations for manufacturing. Int. J. Comput. Integr. Manuf. 35, 2022: 989–1009. https://doi.org/10.1080/095119 2X.2022.2027521.
- 2. Guo Y., W. Zhang, Q. Qin, K. Chen, Y. Wei, Intelligent manufacturing management system based on data mining in artificial intelligence energy-saving resources, Soft Comput. (n.d.). https://doi. org/10.1007/s00500-021-06593-5.
- 3. Jiang Y., D. Wang, W. Xia, W. Li, Optimisation of the logistics system in an electric motor assembly flowshop by integrating the taguchi approach and discrete event simulation. Sustainability, 14, 2022. https://doi.org/10.3390/su142416770
- 4. Fernandes J., T. Van Niekerk, G. Scott, S. Church, Design and development of an industry standard automated guided vehicle for part collection and delivery at an assembly line. J. New Gener. Sci. 20, 2022: 1–13.
- 5. Grznar P., M. Gregor, M. Gaso, G. Gabajova, M. Schickerle, N. Burganova, Dynamic simulation tool for planning and optimisation of supply process, Int. J. Simul. Model. 20, 2021: 441–452. https://doi. org/10.2507/IJSIMM20-3-552.
- 6. Fazlollahtabar H., Parallel autonomous guided vehicle assembly line for a semi-continuous manufacturing system, Assem. Autom. 36, 2016: 262–273. https://doi.org/10.1108/AA-08-2015-065.
- 7. Seha S., J. Zamberi, A.J. Fairul, Design and simulation of integration system between automated material handling system and manufactuing layout in the automotive assembly line, in: 4th Int. Conf. Mech. Eng. Res., 2017. https://doi. org/10.1088/1757-899X/257/1/012017.
- 8. Henebrey J., Gorlach I.A. Enhancement of an automated guided cart. In: Pattern Recognit. Assoc. South Africa Robot. Mechatronics Int. Conf., 2016.
- 9. Zhang L., Y. Hu, Y. Guan, Research on hybrid-load AGV dispatching problem for mixed-model automo- bile assembly line. In: P. Butala, E. Govekar, R. Vrabic (Eds.), 52nd CIRP Conf. Manuf. Syst., 2019: 1059– 1064. https://doi.org/10.1016/j.procir.2019.03.251.
- 10. Stopka O. Modeling the delivery routes carried out by automated guided vehicles when using the specific mathematical optimization method. Open Eng. 10, 2020: 166–174. https://doi.org/10.1515/ eng-2020-0027.
- 11. Karimi B., S.T.A. Niaki, A.H. Niknamfar, M.G. Hassanlu, Multi-objective optimization of job shops with automated guided vehicles: A non-dominated sorting cuckoo search algorithm. Proc. Inst. Mech. Eng. Part O-Journal Risk Reliab. 235, 2021: 306– 328. https://doi.org/10.1177/1748006X20946531.
- 12. Yongjie R., Z. Xiang, G. Siyang, W. Jinwang, D. Jun, Path planning control of automated guided ve- hicle based on workshop measurement positioning system and fuzzy control, Acta Opt. Sin. 39, 2019. https://doi.org/10.3788/AOS201939.0312003.
- 13. W.-S. Kim, D.-E. Lim, On an automated material handling system design problem in cellular manufacturing systems, Eur. J. Ind. Eng. 13, 2019: 400– 419. https://doi.org/10.1504/EJIE.2019.100005.
- 14. Ni J., Research on path design and collision avoidance strategy of automated guided vehicle transportation system. In: Z. Li, F. Cen (Eds.), Int. Conf. Smart Transp. City Eng. 2021. https://doi.org/10.1117/12.2614389.
- 15. Kabir Q.S., SuzukiY., Comparative analysis of different routing heuristics for the battery management of automated guided vehicles. Int. J. Prod. Res. 57, 2019: 624–641. https://doi.org/10.1080/00207543. 2018.1475761
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8168ab4a-6aa5-4ac7-9872-87a09b7b01ad