PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The thermal characteristics of ACCR lines as a function of wind speed – an analytical approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper has investigated the effect of wind speed on selected thermal characteristics of the contemporary ACCR line. As wind speed functions, heating curves, stationary temperature profiles, steady-state current ratings and thermal time constants, have been determined. The composite core (Al–Al2O3) and the Al–Zr alloy braid were modeled as porous solids. As a result, the physical model is composed of a solid cylinder and a hollow cylinder with different material parameters of the above-mentioned elements. The mathematical model was formulated as the boundary-initial problem of the parabolic heat equation. The problem was solved by the state-superposition of and variable-separation method. On this basis, a computer program was developed in the Mathematica 10.4 environment and the velocity characteristics sought for were plotted. The results obtained analytically were positively verified by the finite-element method in the NISA v.16 environment. The physical interpretation of the determined characteristics has been given.
Rocznik
Strony
art. no. e141006
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Faculty of Electrical Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland
  • Faculty of Electrical Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland
Bibliografia
  • [1] J. Hunt, Advanced technology high-temperature conductors, Electric power generation, transmission and distribution. USA: CRC Press, 2012, ch. 24.
  • [2] 3M Aluminum Conductor Composite Reinforced (ACCR), Technical Summary for Common Constructions and Sizes. Metric Units, Electrical Markets Division, 3M High Capacity Conductors, St. Paul, MN, USA, 2009.
  • [3] M. Bockarjova and G. Andersson, “Transmission Line Conductor Temperature Impact on State Estimation Accuracy,” in Proc. of Power Tech. IEEE, Lausanne, 2007, pp. 701–706.
  • [4] T. Knych, Overhead power lines. Theory – Materials – Applications. Kraków AGH: Publishing House, 2010 [in Polish].
  • [5] J. Gentle et al., “Concurrent wind cooling in power transmission lines,” in Western Energy Policy Research Conf., Boise, Idaho, 2012.
  • [6] Y.Q. Ding et al., “The effect of calculated wind speed on the capacity of dynamic line rating,” in IEEE International Conference on High Voltage Engineering and Application, 2016, pp. 1–5.
  • [7] H.M. Goh and N.E. Chin, “Critical aging segments of power transmission line,” Am. J. Appl. Sci., vol. 6, pp. 340–351, 2013.
  • [8] IEEE Std. 738-2012, IEEE Standard for calculating the current-temperature relationship of bare overhead conductors, IEEE Standard Association, Piscataway Township, NJ, USA, 2013.
  • [9] CIGREWorking Group B2.42, Guide for thermal rating calculations of overhead lines, Technical Brochure 601, CIGRE, Paris, France, 2014.
  • [10] F. Incropera, D. De Witt, T. Bergman, and A. Lavine, Introduction to heat transfer. USA: John Wiley&Sons, 2007.
  • [11] U.V. Bourgsdorf and L.G. Nikitina, “Heating of conductors, their thermal endurance and increase in trasmission line capacity,” in CIGRE Conference, Paris, 1980, Paper 22–04.
  • [12] J. Fu., S. Abbott, B. Fox, D.J. Marrow, and S. Abdelkaber, “Wind cooling effect on dynamic overhead line ratings,” in 45th International Universities Power Engineering Conference UPEC, Cardif, UK, 2010.
  • [13] J.D. Hoffman, “On thermal aging prevention in polymer core composite conductor rods,” PhD Thesis, University of Denver, USA, 2015. [Online] Available: https://digitalcommons.du.edu/etd/1066 [Accessed: 17 Feb. 2021].
  • [14] P. Nithiarasu, R.W. Lewis, and K.N. Seetharamu, Fundamentals of the finite element method for heat and mass transfer. UK: John Wiley & Sons, 2016.
  • [15] S. Berhausen and S. Paszek, “Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 3, pp. 575–582, 2015, doi: 10.1515/bpats-2015-0067.
  • [16] L.C. Evans, Partial differential equations. Rhode Islands: American Mathematical Society, 2010.
  • [17] M.J. Latif, Heat Conduction. Haidelberg: Springer-Verlag, 2009.
  • [18] D.A. Nield and A. Bejan, Convection in porous media. New York: Springer-Verlag, 2013.
  • [19] D.C. Lawry and J.R. Daconti, “Overhead line thermal rating calculation based on conductor replica method,” in 2003 IEEE PES Transmission and Distribution Conference and Exposition, pp. 880–885, 2003.
  • [20] P. Kubek and E. Siwy, “Analysis methods of HTLS conductors in terms of mechanical and thermal criteria,” Acta Energ., vol. 1, pp. 75–82, 2013.
  • [21] R.T. Coneybeer, W.Z. Black, and R.A. Bush, “Steady – state and transient ampacity of bus bar,” IEEE Trans. Power Deliver., vol. 9, pp. 1822–1829, 1994.
  • [22] D.W. Hahn and M.N. Ozisik, Heat Conduction. New Jersey: John Wiley & Sons, 2012.
  • [23] G.J. Anders, Rating of electric power cables: ampacity computations for transmission, distribution and industrial application. New York: McGraw-Hill Professional, 1997.
  • [24] V.T. Morgan, “The current distribution, resistance and internal inductance of linear power system conductors – a review of explicit equations,” IEEE Trans. Power Deliv., vol. 38, pp. 1252–1262, 2013.
  • [25] S. Singh, P.K. Jain and Rizwan-uddin, “Analytical solution to transient heat conduction in polar coordinates with multiple layers in radial direction,” Int. J. Therm. Sci., vol. 47, pp. 261–273, 2008.
  • [26] 3M Aluminium Composite Reifnorced, Technical Notebook. Conductor and Accessory Testing, Composite Conductor Program, 3M High Capacity Conductors, St. Paul, MN, USA, 2003.
  • [27] A. Avramescu, “Eindringzeit des elektromagnetischen Feldes und des Wärmefelds in Leiter,” Elektrotechnische Zeitschrift-A, vol. 91, pp. 235–238, 1970.
  • [28] A. Brykalski, “Über die Eindringzeit des elektromagnetischen Feldes in Leiter,” Archiv für Elektrotechnik, vol. 68, pp. 299–304, 1985.
  • [29] Wolfram Research, Inc., Mathematica, Illinois: Wolfram Research Inc., 2021.
  • [30] A. Piekarczuk, “Test-supported numerical analysis for evaluation of the load capacity of thin-walled corrugated profiles,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 6, pp. 791–798, 2017, doi: 10.1515/bpats-2017-0087.
  • [31] Manuals for NISA v.16, NISA Suite of FEA Software (CDROM), Cranes Software, Inc. Troy, MI, USA, 2008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81636d59-f337-449a-a3d2-72d467e8aeaf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.