PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mouldability and its Recovery Properties of 2D Plain Woven Para-Aramid Fabric for Soft Body Armour Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Formowalność i odprężenie elastyczne tkaniny p-aramidowej 2D stosowanej w miękkich pancerzach
Języki publikacji
EN
Abstrakty
EN
Mouldability, along with other mechanical properties, is a very crucial material parameter in various technical textile applications, from composites to soft body armour products. Moreover, the mouldability and recovery behaviours of the material will be affected by various internal and external paramters before, during and after the forming process. The current research particularly tried to study the effects of blank-holder pressure (BHP) and the number of layers not only on the moulding characterstics but also on the recovery behaviour of plain woven p-aramid fabrics made from a high-performance yarn with a linear density of 930 dTex. Samples with various numbers of layers were arranged in the same orientation for the moulding process. The moulding approach utilised a specific moulding device in a low-speed forming process and a predefined semi-hemispherically shaped punch for all specimens.Various important dry textile material moulding characteristics and, most importantly, the moulding recovery properties, such as warp and weft direction drawing-in recovery, center high-point recovery, shear angle recovery etc. were investigated.
PL
Formowalność wraz z innymi właściwościami mechanicznymi jest bardzo ważnym parametrem materiałowym w różnych technicznych zastosowaniach tekstylnych, od kompozytów po miękkie pancerze. Ponadto na formowalność i odprężenie elastyczne materiału mają wpływ różne parametry wewnętrzne i zewnętrzne przed, podczas i po procesie formowania. W pracy szczególnie starano się zbadać wpływ nacisku ślepej próby (BHP) i liczby warstw nie tylko na charakterystykę formowania, ale także na odprężenie elastyczne tkanin p-aramidowych wykonanych z wysokowydajnej przędzy o gęstości liniowej 930 dTex. Próbki o różnej liczbie warstw ułożono w tej samej orientacji do procesu formowania. Zbadano cechy formowania materiału tekstylnego oraz, co najważniejsze, odprężenie elastyczne zarówno w kierunku osnowy i wątku.
Rocznik
Strony
54--62
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • „Gheorghe Asachi” Technical University of Iasi, Faculity of Textile, Leather and Industrial Management, Iasi, Romania
  • University of Lille 1, Lille, France
  • Ecole Nationale Supérieure des Arts et Industries Textiles, GEMTEX, Roubaix, France
  • Soochow University, College of Textile and Clothing Engineering, Suzhou, China
  • University of Lille 1, Lille, France
  • University of Lille 1, Lille, France
  • University of Lille 1, Lille, France
  • Ecole Nationale Supérieure des Arts et Industries Textiles, GEMTEX, Roubaix, France
  • University of Lille 1, Lille, France
  • Ecole Nationale Supérieure des Arts et Industries Textiles, GEMTEX, Roubaix, France
autor
  • Soochow University, College of Textile and Clothing Engineering, Suzhou, China
autor
  • Soochow University, College of Textile and Clothing Engineering, Suzhou, China
Bibliografia
  • 1. Stempień Z. Effect of Velocity of the Structure-dependent Tension Wave Propagation on Ballistic Performance of Aramid Woven Fabrics. FIBRES & TEXTILES in Eastern Europe 2011, 19, 4 (87): 74-80.
  • 2. Cheng-Kun Chu, Yu-Liang Chen. Ballistic-proof Effects of Various Woven Constructions. FIBRES & TEXTILES in Eastern Europe 2010, 18, 6 (83): 63-67.
  • 3. Bilisik K. Two-Dimensional (2D) Fabrics and Three-Dimensional (3D) Preforms for Ballistic and Stabbing Protection: A Review. Text Res J 2016; 0: 1-30.
  • 4. Abtew MA, Boussu F, Bruniaux P, et al. Forming Characteristics and Surface Damages of Stitched Multi-Layered Para-Aramid Fabrics with Various Stitching Parameters for Soft Body Armour Design. Compos Part A. Appl Sci Manuf 2018; 109: 517-537.
  • 5. Abtew MA, Boussu F, Bruniaux P, et al. Experimental Investigation of Effects of Stitching Orientation on Forming Behaviors of 2D P-Aramid Multilayer Woven Preform. In: AIP Conference Proceedings. 2018, pp. 1-8.
  • 6. Abtew MA, Bruniaux P, Boussu F, et al. A Systematic Pattern Generation System for Manufacturing Customized Seamless Multi-Layer Female Soft Body Armour Through Dome-Formation (Moulding) Techniques Using 3D Warp Interlock Fabrics. J Manuf Syst 2018; 49: 61-74.
  • 7. Zhong T, Hu H. Formability of Weft-Knitted Fabrics on a Hemisphere. Autex Res J 2007; 7: 245-251.
  • 8. Bekampiene P, Domskiene J. Experimental Analysis of the Influence of Stress Concentrators on the Buckling of Woven Materials Under Uniaxial Tension. Int J Mater Form 2010; 3: 211-214.
  • 9. Mozafary V, Payvandy P, Bidoki S, et al. Predicting the Influence of Seam Design on Formability and Strength of Nonwoven Structures Using Artificial Neural Network. Fibers Polym 2013; 14: 1535-1540.
  • 10. Robertson RE, Chu TJ, Gerard RJ, et al. Three-Dimensional Fiber Reinforcement Shapes Obtainable From Flat, Bidirectional Fabrics without Wrinkling or Cutting. Part 1. A Single Four-Sided Pyramid. Compos Part A. Appl Sci Manuf 2000; 31: 703-715.
  • 11. Potter K. Beyond the Pin-Jointed Net: Maximising the Deformability of Aligned Continuous Fibre Reinforcements. Compos – Part A. Appl Sci Manuf 2002; 33: 677-686.
  • 12. Mack C, Taylor HM. 39 – The Fitting of Woven Cloth to Surfaces. J Text Inst Trans 1956; 47: T477-T488.
  • 13. Fejdyś M, Łandwijt M, Habaj W, Struszczyk MH. Ballistic Helmet Development Using UHMWPE Fibrous Materials. FIBRES & TEXTILES in Eastern Europe 2015; 23, 1(109): 89-97.
  • 14. Abtew MA, Bruniaux P, Boussu F, et al. Development of Comfortable and Well-Fitted Bra Pattern for Customized Female Soft Body Armor Through 3D Design Process of Adaptive Bust on Virtual Mannequin. Comput Ind 2018; 100: 7-20.
  • 15. Chen X, Lo W-Y, Tayyar AE. Mouldability of Angle-Interlock Woven Fabrics for Technical Applications. Text Res J 2002; 72: 195-200.
  • 16. Boussu F, Legrand X, Nauman S, et al. Mouldability of Angle Interlock Fabrics. In: FCPM, the 9th International Conference on Flow Processes in Composite Materials. Montréal (Québec), Canada, 2008.
  • 17. Ye L, Daghyani HR. Characteristics of Woven Fibre Fabric Reinforced Composites in Forming Process. Compos Part A 1997; 28: 869-874.
  • 18. Dufour C, Boussu F, Wang P, et al. Forming Behaviour of 3D Warp Interlock Fabric to Produce Tubular Cross Composite part. In: 14th AUTEX World Textile Conference. Bursa, Turkey, 2014.
  • 19. Hu J, Jiang Y. Modeling Formability of Multiaxial Warp Knitted Fabrics on A Hemisphere. Compos Part A Appl Sci Manuf 2002; 33: 725-734.
  • 20. Dufour C, Wang P, Boussu F, et al. Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms. Appl Compos Mater 2014; 21: 725-738.
  • 21. Lee JS, Hong SJ, Yu W, et al. The Effect of Blank Holder Force on the Stamp Forming Behavior of Non-Crimp Fabric with a Chain Stitch. Compos Sci Technol 2007; 67: 357–366.
  • 22. Zhu B, Yu TX, Zhang H, et al. Experimental Investigation of Formability of Woven Textile Composite Preform in Stamping Operation. Composites 2008; 1: 969-972.
  • 23. Cai Z, Yu JZ, Ko FK. Formability of Textile Preforms for Composite Applications. Part 2: Evaluation Experiments and Modelling. Compos Manuf 1994; 5: 123-132.
  • 24. Yu JZ, Cai Z, Ko FK. Formability of Textile Preforms for Composite Applications. Part 1: Characterization Experiments. Compos Manuf 1994; 5: 113-122.
  • 25. Chen X, Yang D. Use of Three-dimensional Angle-interlock Woven Fabric for Seamless Female Body Armor : Part II : Mathematical Modeling. Text Res J 2010; 80: 1589-1601.
  • 26. Boussu F, Bruniaux P. Customization of a Lightweight Ballistic Vest for the Female Form. In: Advances In Military Textiles And Personal Equipment. Woodhead Publishing. 2012, pp. 167-195.
  • 27. Mahbub R, Wang L, Arnold L. Design of knitted three-dimensional seamless female body armour vests. Int J Fash Des Technol Educ 2014; 7: 198-207.
  • 28. Najjar W, Legrand X, Dal Santo P, et al. Analysis of the Blank Holder Force Effect on the Preforming Process Using a Simple Discrete Approach. Key Eng Mater 2013; 554–557: 441-446.
  • 29. Nawab Y, Legrand X, Koncar V. Study of Changes in 3D-Woven Multilayer Interlock Fabric Preforms While Forming. J Text Inst 2012; 103: 1273-1279.
  • 30. Vanclooster K, Lomov SV, Verpoest I. On the Formability of Multi-Layered Fabric Composites. Proc 17th Int Conf Compos Mater, 2009; 1-10.
  • 31. Najjar W, Legrand X, Pupin C, et al. A Simple Discrete Method for the Simulation of the Preforming of Woven Fabric Reinforcement. Key Eng Mater 2012; 504: 213-218.
  • 32. Dufour C, Boussu F, Wang P, et al. Experimental Forming Studies on 3D Warp Interlock Fabrics. Eccm16 – 16Th Eur Conf Compos Mater.
  • 33. Capelle E, Ouagne P, Soulat D, et al. Complex Shape Forming of Flax Woven Fabrics: Design of Specific Blank-Holder Shapes to Prevent Defects. Compos Part B Eng 2014; 62: 29-36.
  • 34. Prodromou AG, Chen J. On the Relationship Between Shear Angle and Wrinkling of Textile Composite Preforms. Compos Part A Appl Sci Manuf 1997; 28: 491-503.
  • 35. Skelton J. Textile Materials: Recovery from Imposed Deformation. Science (80) 1972; 177: 657-663.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8162818b-158d-44b7-9bae-87c940301988
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.