PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cast Structures Improving Thermalm Conductivity for Energy Storage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal energy encounters a huge demand in the world, part of which can be met by renewable energy sources, such as solar energy, and storage of thermal energy surplus from industrial processes. For this purpose, thermal energy storage (TES) units, in which heat is stored, are developed. The energy is accumulated by phase change materials (PCM) characterized by high phase transition enthalpy. PCMs have poor thermal conductivity; therefore, to take full advantage of their capabilities and to accelerate the charging and discharging cycle, metallic structures are used. These structures are manufactured using investment casting technology. Creating models with additive methods, such as 3D printing, allows obtaining complex shapes with high accuracy, such as thin-walled castings. At a large scale, the method may not be cost-effective. In this paper, the heat exchanger models were made from PLA and the castings - from AC44200 aluminum alloy. Investment casting requires the proper selection of parameters, such as the right material for the model, the selection of the firing temperature, the adjustment of the temperature of the molten metal, the temperature of the mold, and the pressure in it. Misaligning any of the parameters can lead to imperfections on the finished casting. Based on the model roughness study, it was found that minor roughness and higher accuracy are presented by the lower parts of the casting, while weaker performance is observed for the upper parts. Metal castings in a salt PCM environment may be subjected to corrosion. Therefore, the authors proposed to produce protective coatings on aluminum castings by the PEO method - plasma electrolytic oxidation. Porous ceramic thin films consisting mainly of alumina were obtained. The next tests will be aimed to confirm whether this layer will not negatively influence the thermal conductivity of the thermal energy storage.
Rocznik
Strony
11--16
Opis fizyczny
Bibliogr. 22 poz., fot., rys., tab., wykr.
Twórcy
  • Wrocław University of Science and Technology, Foundry and Automation, Department of Lightweight Elements Engineering, Wrocław, Poland
Bibliografia
  • [1] IEA. (2019). Renewables 2019. Paris. Retrieved from https://www.iea.org/reports/renewables-2019.
  • [2] Vasu, A., Hagos, F.Y., Noor, M.M., Mamat, R., Azmi, W.H., Abdullah, A.A., & Ibrahim, T.K. (2017). Corrosion effect of phase change materials in solar thermal energy storage application. Renewable and Sustainable Energy Reviews. 76, 19-33. DOI:10.1016/j.rser.2017.03.018.
  • [3] Sharma, A., Tyagi, V.V., Chen, C.R. & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. 13(2), 318-345. DOI:10.1016/j.rser. 2007.10.005.
  • [4] Dmitruk, A., Naplocha, K., Kaczmar, J.W. & Smykowski, D. (2020). Pin-fin metal alloy structures enhancing heat transfer in PCM-based heat storage units. Heat and Mass Transfer. 56(7), 2265-2271. DOI:10.1007/s00231-020-02861-6.
  • [5] Dmitruk, A., Naplocha, K., Grzȩda, J. & Kaczmar, J.W. (2020). Aluminum inserts for enhancing heat transfer in PCM accumulator. Materials. 13(2), 415. DOI:10.3390/ma13020415.
  • [6] Tao, Y.B., You, Y., & He, Y.L. (2016). Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material. Applied Thermal Engineering. 93, 476-485. DOI:10.1016/j.applthermaleng.2015.10.016.
  • [7] Joshi, V. & Rathod, M.K. (2019). Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: An evaluation for fill height ratio and porosity. Applied Energy. 253, 113621. DOI:10.1016/j.apenergy.2019.113621.
  • [8] Zhao, C.Y., Zhou, D. & Wu, Z.G. (2011). Heat transfer of phase change materials (PCMs) in porous materials. Frontiers in Energy. 5(2), 174-180. DOI:10.1007/s11708-011-0140-3.
  • [9] Zhao, C.Y., Lu, W. & Tian, Y. (2010). Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar Energy. 84(8), 1402-1412. DOI:10.1016/j.solener.2010.04.022.
  • [10] Zhao, C.Y. (2012). Review on thermal transport in high porosity cellular metal foams with open cells. International Journal of Heat and Mass Transfer. 55(13-14), 3618-3632. DOI:10.1016/j.ijheatmasstransfer.2012.03.017.
  • [11] Pattnaik, S., Karunakar, D.B. & Jha, P.K. (2012). Developments in investment casting process - A review. Journal of Materials Processing Technology. 212(11), 2332-2348. DOI:10.1016/J.JMATPROTEC.2012.06.003.
  • [12] Chua, C.K., Leong, K.F. & Liu, Z.H. (2015). Rapid tooling in manufacturing. In: Nee A. (eds.) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_39
  • [13] Cheah, C.M., Chua, C.K., Lee, C.W., Feng, C. & Totong, K. (2005). Rapid prototyping and tooling techniques: A review of applications for rapid investment casting. International Journal of Advanced Manufacturing Technology. 25(3-4), 308-320. DOI:10.1007/S00170-003-1840-6.
  • [14] Krey, K.F.R. & Ratzmann, A. (2021). Investment casting with fff (fused filament fabrication) printed appliances: The intermediate step. Quintessence International. 52(7), 618-623. DOI:10.3290/J.QI.B1098311.
  • [15] Körber, S., Völkl, R. & Glatzel, U. (2021). 3D printed polymer positive models for the investment casting of extremely thin-walled single crystals. Journal of Materials Processing Technology. 293, 117095. DOI:10.1016/J.JMATPROTEC.2021.117095.
  • [16] Dzhurinskiy, D.V., Dautov, S.S., Shornikov, P.G., & Akhatov, I.S. (2021). Surface modification of aluminum 6061-0 Alloy by plasma electrolytic oxidation to improve corrosion resistance properties. Coatings. 11(1), 1-13. DOI:10.3390/coatings11010004.
  • [17] Sharma, A., Jang, Y.-J. & Jung, J.P. (2017). Effect of KOH to Na2SiO3 ratio on microstructure and hardness of plasma electrolytic oxidation coatings on AA 6061 Alloy. Journal of Materials Engineering and Performance. 26(10), 5032-5042. DOI:10.1007/s11665-017-2916-z.
  • [18] Hwang, M. & Chung, W. (2018). Effects of a carbon nanotube additive on the corrosion-resistance and heat-dissipation properties of plasma electrolytic oxidation on AZ31 magnesium alloy. Materials. 11(12), 2438. DOI:10.3390/ma11122438.
  • [19] Liu, W.Y., Liu, Y., Blawert, C., Zheludkevich, M.L., Fan, C. L., Talha, M. & Lin, Y.H. (2020). Microstructure, wear and corrosion performance of plasma electrolytic oxidation coatings formed on D16T Al alloy. Rare Metals. 39(12), 1425-1439. DOI:10.1007/s12598-020-01523-0.
  • [20] Liu, W., Pu, Y., Liao, H., Lin, Y. & He, W. (2020). Corrosion and wear behavior of PEO coatings on D16T aluminum alloy with different concentrations of graphene. Coatings. 10(3), 249. DOI:10.3390/coatings10030249.
  • [21] Naplocha, K., Dmitruk, A., Mayer, P. & Kaczmar, J. W. (2019). Design of honeycomb structures produced by investment casting. Archives of Foundry Engineering. 19(4), 76-80. DOI:10.24425/afe.2019.129633.
  • [22] Jiang, B.L. & Wang, Y.M. (2010). Plasma electrolytic oxidation treatment of aluminium and titanium alloys. In Hanshan Dong (eds.) Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys. Woodhead Publishing. 110-154. DOI:10.1533/ 9781845699451.2.110.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-816028ae-30ee-42fa-bd86-71f3f1a831aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.