Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The penetration of a shaped charge jet with non-uniform density distribution was studied. The virtual origin model, which assumes a constant jet density, was modified to include the situation where the jet density deficit/reduction of an un-sintered copper-tungsten powder jet causes a non-uniform jet density distribution. A relation between the relative density ratio and the normalised jet velocity is proposed, based on which an analytical solution of the modified virtual origin model is obtained. The validity of the modified virtual origin model was demonstrated by its largely improved prediction in comparison with experimental and numerical results. It showed that the density reduction term reduces the penetration depth by 16.58% for an un-sintered copper-tungsten powder jet.
Rocznik
Tom
Strony
927--943
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Technical Research Centre, Cairo, Egypt
autor
- Military Technical College, Kobry Elkobbah, Cairo, Egypt
autor
- The University of Manchester, School of Mechanical Aerospace and Civil Engineering, Manchester, UK
Bibliografia
- [1] Birkhoff G., Macdougall D.P., Pugh E.M., Taylor G., Explosives with Lined Cavities, J. Appl. Phys., 1948, 19, 563.
- [2] Walters W.P., Flis W.J., Chou P.C., A Survey of Shaped-charge Jet Penetration Models, Int. J. Impact Eng., 1988, 7(3), 307.
- [3] Abrahamson G.R., Goodier J.N., Penetration by Shaped Charge Jets of Nonuniform Velocity, J. Appl. Phys., 1963, 34(1), 195.
- [4] Bryan G.M. Allison F.E., Cratering by a Train of Hypervelocity Fragments, Proc. 2nd Hypervelocity Impact Effects Symp., 1957, 1.
- [5] Allison F.E., Vitali R., A New Method of Computing Penetration Variables for Shaped Charge Jet, Ballistic Research Laboratory Report No. 1184, 1963.
- [6] Schwartz W., Modified SDM Model for the Calculation of Shaped Charge Hole Profiles, Propellants Explos. Pyrotech., 1994. 19(4), 192-201.
- [7] Simon J., Dipersio R., Merendino A.B., Penetration of Shaped-charge Jets into Metallic Targets, Ballistic Research Laboratory Memorandum, Report No. 1296, 1965.
- [8] Zernow L., The Density Deficit in Stretching Shaped Charge Jets, Int. J. Impact Eng., 1997, 20, 849.
- [9] Jamet F., Measurements of Densities in Shaped Charge Jets and Detonation Waves, American Society for Non-Destructive Testing, 1976.
- [10] Werneyer K.D., Mostert F.J., Analytical Model Predicting the Penetration Behaviour of a Jet with a Time-varying Density Profile, 21st Int. Symposium on Ballistics, South Africa, 2004, 390.
- [11] Maritz M.F., Werneyer K.D., Mostert F.J., An Analytical Penetration Model for Jets with Varying Mass Density Profiles, 22nd Int. Symposium on Ballistics, Canada, 2005, 622.
- [12] Grove B., Walton I., Shaped Charge Jet Velocity and Density Profiles, 23rd Int. Symposium on Ballistics, Spain 2007, 103.
- [13] Zygmunt B., Wilk Z., Formation of Jets by Shaped Charges with Metal Powder Liners, Propellants Explos. Pyrotech., 2008, 33, 482.
- [14] Leidel D.J., Lawson J.P., High Performance Powder Metal Mixtures for Shaped Charge Liners, Patent US 7,547,345 B2, 2009.
- [15] Yingbin L., Zhaowu S., Numerical Simulation on Formation and Penetration Target of Powder Metal Shaped Charge Jet, Int. Conf. on Computer Application and System Modelling (ICCASM), 2010, V9-518.
- [16] Walters W., Peregino P., Summers R., A Study of Jets from Un-sintered Powder Metal Lined Non-precision Small Calibre Shaped Charge, Army Research Lab. Report No. MD 21005-5066, 2001.
- [17] Zeman S., Elbeih A., Yan Q.-L., Note on the Use of the Vacuum Stability Test in the Study of Initiation Reactivity of Attractive Cyclic Nitramines in Formex P1 Matrix, J. Therm. Anal. Calorim., 2013, 111, 1503.
- [18] Elbeih A., Zeman S., Pachmáň J., Vávra P., Trzciński W.A., Akštein Z., Detonation Characteristics of Attractive Cyclic Nitramines Bonded by Plastic Matrices Based on Polyisobutylene and Poly(methyl methacrylate) Binders, J. Energ. Mater., 2012, 30(4), 358.
- [19] Elbeih A., Jungova M., Zeman, S., Vavra P., Akstein Z., Explosive Strength and Impact Sensitivity of Several PBXs Based on Attractive Cyclic Nitramines, Propellants Explos. Pyrotech., 2012, 37(3), 329.
- [20] Elbeih A., Zeman S., Jungova M., Vavra P., Akstein Z., Effect of Different Polymeric Matrices on Some Properties of Plastic Bonded Explosives, Propellants Explos. Pyrotech., 2012, 37(6), 676.
- [21] Elbeih A., Zeman, S., Pachman J., Effect of Polar Plasticizers on the Characteristics of Selected Cyclic Nitramines, Cent. Eur. J. Energ. Mater., 2013, 10(3), 339.
- [22] Elbeih A., Zeman, S., Jungova M., Akstein Z., Effect of Different Polymeric Matrices on Sensitivity and Performance of Interesting Cyclic Nitramines, Cent. Eur. J. Energ. Mater., 2012, 9(2), 17.
- [23] Thurman J.T., Practical Bomb Scene Investigation, 2nd ed., CRC Press, London, 2011; ISBN 9781439819593.
- [24] Chick M.C., Learmonth L.A., Determination of Shock Initiation and Detonation Characteristics of PE4 in Proof Test Geometries, Report No. MRL-R-979, 1986.
- [25] Wharton R.K., Formby S.A., Merrifield R., Air blast TNT Equivalence for a Range of Commercial Blasting Explosives, J. Hazard. Mater., 2000, 79, 3.
- [26] AUTODYN® Theory Manual, 3rd Revision, Century Dynamics, USA, 1997.
- [27] Pugh E.M., Eichelberger R.J., Rostoker N., Theory of Jet Formation by Charges with Lined Conical Cavities, J. Appl. Phys., 1952, 23, 532.
- [28] AUTODYN® Jetting Tutorial, 3rd Revision, Century Dynamics, USA, 1997.
- [29] Elshenawy T., Li Q.M., Breakup Time of Zirconium Shaped Charge Jet, Propellants Explos. Pyrotech., 2013, 38, 703.
- [30] Elshenawy T., Li Q.M. Influences of Target Strength and Confinement on the Penetration Depth of an Oil Well Perforator, Int. J. Impact Eng., 2013, 54, 30.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-815f91e7-af30-47ea-b5a0-ab818888091b