Identyfikatory
Warianty tytułu
Prognozowanie uszkodzeń statków powietrznych dla celów obsługi konserwacyjnej na podstawie ich parametrów oraz danych z eksploatacji
Języki publikacji
Abstrakty
Aircraft maintenance and repair organizations (MROs) have to be competitive and attractive for both existing and new customers. The aircraft ground time at MROs should be as short as possible and cost effective without reducing the quality of the work. Process optimization in MROs requires the continuous improvement of processes and the elimination of non-value-added activities during maintenance checks. There is, on the one hand, an obligation to follow the prescribed procedures and, on the other hand, pressure for time and cost reduction. The aircraft servicing process has been analysed according to a lean methodology. The optimization of logistics processes is recognized as the most promising method for reducing the maintenance service time and costs of spare parts. The probability of aircraft faults is calculated on the basis of historic data from previously completed service projects. Aircraft parameters, such as aircraft type, operator, aircraft age, flight hours, flight cycles, engine type and operation location, are taken into consideration in the fault forecasting. The fault probability is used as an indicator for defining a priority list for the accomplishment of jobs included in the aircraft maintenance service. The proposed methodology was validated and confirmed on four different projects.
Organizacje zajmujące się konserwacją i naprawami statków powietrznych (MRO) muszą dbać o swoją konkurencyjność i atrakcyjność zarówno dla istniejących jak i nowych klientów. Czas trwania obsługi naziemnej w MRO powinien być jak najkrótszy a konserwacja powinna pociągać za sobą jak najmniejsze koszty, bez konieczności obniżania jakości pracy. Optymalizacja procesów przeprowadzanych w MRO wymaga ciągłego doskonalenia oraz eliminacji nieuzasadnionych czynności przeglądowych. Z jednej strony pracownicy MRO muszą przestrzegać określonych procedur, z drugiej zaś strony, ciąży na nich presja redukcji czasu i kosztów obsługi. Proces obsługi statku powietrznego analizowano zgodnie z metodologią szczupłego utrzymania ruchu. Optymalizację procesów logistycznych uznaje się za najbardziej obiecujący sposób redukcji czasu obsługi serwisowej oraz kosztów części zamiennych. Prawdopodobieństwo wystąpienia uszkodzeń statku powietrznego obliczano na podstawie danych historycznych z uprzednio przeprowadzonych prac obsługowych. W prognozowaniu uszkodzeń, uwzględniano takie parametry statku powietrznego, jak typ statku, jego operator, wiek, liczba godzin w powietrzu, liczba cykli lotów, typ silnika oraz miejsce stacjonowania. Prawdopodobieństwo wystąpienia uszkodzeń wykorzystano jako wskaźnik do hierarchizacji zadań obsługi technicznej statku powietrznego. Przydatność proponowanej metodologii zweryfikowano i potwierdzono na przykładzie czterech różnych projektów.
Czasopismo
Rocznik
Tom
Strony
624--633
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Adria Airways Tehnika Zg. Brnik 130h Si-4210 Brnik, Slovenia
autor
- University of Ljubljana Faculty of Mechanical Engineering Aškerčeva 6 Si-1000 Ljubljana, Slovenia
autor
- University of Ljubljana Faculty of Mechanical Engineering Aškerčeva 6 Si-1000 Ljubljana, Slovenia
Bibliografia
- 1. Allison L. Types and Classes of Machine Learning and Data Mining. Clayton, Victoria: Monash University, 2003.
- 2. Altay N., Litteral L.A. (ed.) Service parts management: Demand forecasting and Inventory Control, Springer–Verlag, London 2011, https:// doi.org/10.1007/978-0-85729-039-7.
- 3. Amirjabbari B., Bhuiyan N. An Application of a Cost Minimization Model in Determining Safety Stock Level and Location. World Academy of Science, Engineering and Technology 2011; 79: 797-806.
- 4. Baohui J., Chunhui X., Yaohua L. Study on Optimization Method of Aircraft Maintenance Plan Based on Longest Path. Journal of Applied Sciences 2013; 13(16): 3354-3357, https://doi.org/10.3923/jas.2013.3354.3357.
- 5. Bazargan M. An optimization approach to aircraft dispatching strategy with maintenance cost - A case study. Journal of Air Transport Management 2015; 42: 10-14, https://doi.org/10.1016/j.jairtraman.2014.07.008.
- 6. Bruno V., Garcia L., Nocco S., Quer S. Stressing Symbolic Scheduling Techniques within Aircraft Maintenance Optimization. Journal on Satisfiability, Boolean Modeling and Computation 2008; 5: 83-110.
- 7. Byer B., Hess A., Fila L. Writing A Convincing Cost Benefit Analysis to Substantiate Autonomic Logistics. IEEE Aerospace Conference, 2001; 6: 3095-3103, https://doi.org/10.1109/AERO.2001.931327.
- 8. Carbonneau R., Laframboise K., Vahidov R. Application of machine learning techniques for supply chain demand forecasting. European Journal of Operational Research 2008; 184: 1140–1154, https://doi.org/10.1016/j.ejor.2006.12.004.
- 9. Chen D., Wang X., Zhao J. Aircraft Maintenance Decision System Based on Real-time Condition Monitoring. IWIEE, Procedia Engineering 2012; 29: 765 – 769, https://doi.org/10.1016/j.proeng.2012.01.038.
- 10. Cohen M. A., Wille J.-H. Implications for Service Parts Management in the Rapidly Changing Aviation MRO Market. Hamburg: Helmut Schmidt University, 2006.
- 11. Dekker R. Applications of maintenance optimization models: a review and analysis. Reliability Engineering and System Safety 1996; 51: 229-240, https://doi.org/10.1016/0951-8320(95)00076-3.
- 12. Galar D., Gustafson A., Tormos B., Berges L. Maintenance Decision Making based on different types of data fusion. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2012; 14 (2): 135–144.
- 13. Ghobbar A.A., Friend C.H., Evaluation of forecastingmethods for intermittent parts dem and In the field of aviation: a predictive model, Computers & Operation research, 2003: 2097–2114, https://doi.org/10.1016/S0305-0548(02)00125-9.
- 14. Gu J., Zhang G., Li K. W. Efficient aircraft spare parts inventory management under dem and uncertainty. Journal of Air Transport Management 2015; 42:101-109, https://doi.org/10.1016/j.jairtraman.2014.09.006.
- 15. Harrington P. Machine Learning in Action. Shelter Island: Manning, 2012.
- 16. Hölzel N. B., Schröder C., Schilling T., Gollnick V. A Maintenance Packaging and Scheduling Optimization Method for Future Aircraft. Air Transport and Operations Symposium, 2012; 1-11.
- 17. Jasiulewicz – Kaczmarek M. Integrating Lean and Green Paradigms in Maintenance Management, The International Federation of Automatic Control, Cape Town, South Africa. August 24-29, 2014: 4471-4476.
- 18. Jasiulewicz-Kaczmarek M. Sustainability: Orientation in maintenance management: Case study. In: Golinska P, editor. EcoProduction and logistics, London: Springer; 2013: 135–154, https://doi.org/10.1007/978-3-642-23553-5_9.
- 19. Johnson M. E., Dubikovsky S. I. Incorporating Lean Six Sigma into an Aviation Technology Program. West Lafayette, Indiana: Purdue University, 2008.
- 20. Kasava N. K., Yusof N. M., Khademi A., Saman M.Z.M. Sustainable Domain Value Stream Mapping (SdVSM) Framework Application in Aircraft Maintenance: A Case Study. 12th Global conference on sustainable manufacturing: Procedia CIRP 2015; 26: 418-423.
- 21. Kipli J, Toyli J, Vepsalainen A. Cooperative Strategies for the Availability Service of the Repairable Aircraft Components. International Journal of Production Economics 2009; 117(2): 360-370, https://doi.org/10.1016/j.ijpe.2008.12.001.
- 22. Kolanjiappan S., Maran K. Lean Philosophy in Aircraft Maintenance. Journal of Management Research and Development (JMRD) 2011; 1 (1): 27-41.
- 23. Kozik P., Sęp J. Aircraft engine overhaul dem and forecasting Rusing ANN, Management and Production Engineering Review 2012; 3 (2): 21–26.
- 24. Lam MD. ERP for MRO: An Alternative Perspective from Package Programs to Niche Providers. Overhaul and Maintenance 2008; 14(5): 36-43.
- 25. Lee L. H., Chew E. P., Teng S., Chen Y. Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem. European Journal of Operational Research 2008; 189: 476–491, https://doi.org/10.1016/j.ejor.2007.05.036.
- 26. Li Z., Guo J., Zhou R. Maintenance Scheduling Optimization Based on Reliability and Prognostics Information. Conference: 2016 Annual Reliability and Maintainability Symposium (RAMS), https://doi.org/10.1109/RAMS.2016.7448069.
- 27. Lu Z., Zhou J., Li N. Maintainability fuzzy evaluation based on maintenance task virtual simulation for aircraft system. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17 (4): 504–512, https://doi.org/10.17531/ein.2015.4.4.
- 28. Murphy S. The Status of Lean Implementation within South African Aircraft Maintenance Organizations. Johannesburg: University of the Witwatersrand, 2011.
- 29. Papakostas N., Papachatzakis P., Xanthakis V., Mourtzis D., Chryssolouris G. An approach to operational aircraft maintenance planning. Decision Support Systems 2010; 48: 604–612, https://doi.org/10.1016/j.dss.2009.11.010.
- 30. Pleumpirom Y., Amornsawadwatana S. Multiobjective Optimization of Aircraft Maintenance in Thailand Using Goal Programming: A Decision-Support Model, Advances in Decision Sciences. 2012; 2012: 1-17.
- 31. Pogačnik B., Tavčar J., Duhovnik J. Application of Lean methods into aircraft maintenance processes. Transdisciplinary lifecycle analysis of systems: ISPE Inc. Int. Con. on CE. Delft: 2015; 259-268.
- 32. Potočnik P., Strmčnik E., Govekar E. Linear and Neural Network-based Models for Short-Term Heat Load Forecasting. Strojniški vestnik - Journal of Mechanical Engineering 2015; 61 (9): 543-550.
- 33. Rasuo B., Duknic G. Optimization of the aircraft general overhaul process. Aircraft engineering and aerospace technology 2013; 85 (5): 343-354, https://doi.org/10.1108/AEAT-02-2012-0017.
- 34. Rodrigues L. R., Pordeus Gomes J. P., Bizarria C. de O., Harrop Galvão R. K. Using Prognostic System and Decision Analysis Techniques In Aircraft Maintenance Cost-Benefit Models. IEEE Aerospace Conference, 2010; 1-7.
- 35. Sahay C., Shetty D., Ghosh S., Islam M., Turner M. Optimization of Assembly and Disassembly of GP7200 Engine. ASME International Mechanical Engineering Congress and Exposition 2013; 3: 1815-1826.
- 36. Samaranayake P, Kiridena S. Aircraft Maintenance Planning and Scheduling: An Integrated Framework. Journal of Quality in Maintenance Engineering 2012; 18(4): 432-453, https://doi.org/10.1108/13552511211281598.
- 37. Sarac A., Batta R., Rump C. M. A branch-and-price approach for operational aircraft maintenance routing. European Journal of Operational Research 2006; 175, 1850–1869, https://doi.org/10.1016/j.ejor.2004.10.033.
- 38. Savhnay R, Kannan S, Li X. Developing a value stream map to evaluate breakdown maintenance operations. Int J Industrial and Systems Engineering 2009; 4(3): 229–240, https://doi.org/10.1504/IJISE.2009.023539.
- 39. Slak A., Tavčar J., Duhovnik J. Application of Genetic Algorithm into Multicriteria Batch Manufacturing Scheduling. Strojniški vestnik - Journal of Mechanical Engineering 2011; 57, 2: 110-124.
- 40. Sriram C., Haghani A. An optimization model for aircraft maintenance scheduling and re-assignment. Transportation Research Part A 2003; 37: 29–48, https://doi.org/10.1016/S0965-8564(02)00004-6.
- 41. Stadnicka D., Ratnayake R.M.C. Enhancing aircraft maintenance services: a VSM based case study. Procedia Engineering, 2017; 182: 665672, https://doi.org/10.1016/j.proeng.2017.03.177.
- 42. Wang H., Pham H. Reliability and Optimal Maintenance. Springer Series in Reliability Engineering series, London: Springer, 2006.
- 43. Wazny M., Wojtowicz K. The analysis of the military aircraft maintains system and the modernization proposal. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2008; 3: 4-11.
- 44. Witten I.H., Frank E., Hall M.A. Data Mining, Practical Machine Learning Tools and Techniques. Third Edition. Burlington: Morgan Kaufmann Publishers, 2011.
- 45. Womack JP, Jones DT. Lean thinking: Banish waste and create wealth in your corporation. New York: Simon and Schuster, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-815f0360-d73b-4bc2-8865-8b83d9a5fe00