PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Batch removal of Pb (ΙΙ) ions from aqueous medium using gamma-Al2O3 nanoparticles/ethyl cellulose adsorbent fabricated via electrospinning method: An equilibrium isotherm and characterization study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present work is to study the efficiency of a biocompatible polymer-based adsorbent for the removal of Pb (II) ions whose devastating effects on people’s health is a matter of great concern from aqueous solution. In this study, ethyl cellulose and gamma-Al2 O<3  nanoparticles/ethyl cellulose electrospun adsorbents were prepared for the batch removal of Pb (II) ions from aqueous solution. Both samples were characterized using contact angle analysis, N2 adsorption/desorption technique, FT-IR and SEM. The Freundlich model (R-square = 0.935 and RMSD (%) = 6.659) and the Dubinin-Radushkevich model (R-square = 0.944 and RMSD (%) = 6.145) were found to be more reliable in predicting the experimental data from the adsorption of Pb (II) ions onto the electrospun gamma-Al2 O<3  nanoparticles/ethyl cellulose than the Langmuir model (R-square = 0.685 and RMSD (%) = 14.61) and also the Temkin model (R-square = 0.695 and RMSD (%) = 14.38).
Rocznik
Strony
32--39
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box, 1365-4563, Tehran, Iran
  • School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box, 1365-4563, Tehran, Iran
  • School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box, 1365-4563, Tehran, Iran
Bibliografia
  • 1. Singha, B. & Das, S.K. Removal of Pb(II) ions from aqueous solution and industrial efflluent using natural biosorbents. Environ. Sci. Pollut. Res. 19 (2012) 2212–2226. DOI: 10.1007/s11356-011-0725-8.
  • 2. Yang, R., Aubrecht, K.B., Ma, H., Wang, R., Grubbs, R.B., Hsiao, B.S. & Chu, B. Thiol-modified cellulose nanofi - brous composite membranes for chromium (VI) and lead (II) adsorption, Polym. (United Kingdom). 55 (2014) 1167–1176. DOI: 10.1016/j.polymer.2014.01.043.
  • 3. Pfadenhauer, L.M., Burns, J., Rohwer, A. & Rehfuess, E.A. Effectiveness of interventions to reduce exposure to lead through consumer products and drinking water: A systematic review. Environ. Res. 147 (2016) 525–536. DOI: 10.1016/j. envres.2016.03.004.
  • 4. Klapiszewski, Ł. & Szatkowski, T. Removal of lead (II) ions by an adsorption process with the use of an advanced SiO2 / lignin biosorbent. Polish J. Chem. Technol. 19 (2017) 48–53. DOI: 10.1515/pjct-2017-0007.
  • 5. Pitsari, S., Tsoufakis, E. & Loizidou, M. Enhanced lead adsorption by unbleached newspaper pulp modified with citric acid. Chem. Eng. J. 223 (2013) 18–30. DOI: 10.1016/j. cej.2013.02.105.
  • 6. Bensacia, N., Fechete, I., Moulay, S., Hulea, O., Boos, A. & Garin, F., Kinetic and equilibrium studies of lead(II) adsorption from aqueous media by KIT-6 mesoporous silica functionalized with -COOH, Comptes Rendus Chim. 17 (2014) 869–880. DOI: 10.1016/j.crci.2014.03.007.
  • 7. Fu, F. & Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92 (2011) 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • 8. Carolin, C.F., Kumar, P.S., Saravanan, A., Joshiba, G.J. & Naushad, M., Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 5 (2017) 2782–2799. DOI: 10.1016/j.jece.2017.05.029.
  • 9. Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G. & Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotoxicol. Environ. Saf. 148 (2018) 702–712. DOI: 10.1016/j.ecoenv.2017.11.034.
  • 10. Peng, W., Li, H., Liu, Y. & Song, S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 230 (2017) 496–504. DOI: 10.1016/j.molliq.2017.01.064.
  • 11. Bhattacharyya, K.G. & Sen Gupta, S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 140 (2008) 114–131. DOI: 10.1016/j.cis.2007.12.008.
  • 12. Demirbas, A., Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 157 (2008) 220–229. DOI: 10.1016/j.jhazmat.2008.01.024.
  • 13. Babel, S. & Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 97 (2003) 219–243. DOI: 10.1016/S0304-3894(02)00263-7.
  • 14. Bhattacharyya, K.G. & Sen Gupta, S., Adsorption of a few heavy metals on natural and modifi ed kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 140 (2008) 114–131. DOI: 10.1016/j.cis.2007.12.008.
  • 15. Shen, J., Li, Z., nan Wu, Y., Zhang, B. & Li, F., Dendrimer-based preparation of mesoporous alumina nanofibers by electrospinning and their application in dye adsorption. Chem. Eng. J. 264 (2015) 48–55. DOI: 10.1016/j.cej.2014.11.069.
  • 16. Song, L., Huo, J., Wang, X., Yang, F., He, J., Li, C. Phosphate adsorption by a Cu(II)-loaded polyethersulfone-type metal affinity membrane with the presence of coexistent ions. Chem. Eng. J. 284 (2016) 182–193. DOI: 10.1016/j.cej.2015.08.146.
  • 17. Lalia, B.S., Kochkodan, V., Hashaikeh, R., Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship, Desalination. 326 (2013) 77–95. DOI: 10.1016/j.desal.2013.06.016.
  • 18. Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63 (2003) 2223–2253. DOI: 10.1016/S0266-3538(03)00178-7.
  • 19. Ma, Z., Masaya, K. & Ramakrishna, S. Immobilization of Cibacron blue F3GA on electrospun polysulphone ultra-fine fiber surfaces towards developing an affinity membrane for albumin adsorption. J. Memb. Sci. 282 (2006) 237–244. DOI: 10.1016/j.memsci.2006.05.027.
  • 20. Wu, J., Wang, N., Zhao, Y. & Jiang, L. Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A. 1 (2013) 7290. DOI: 10.1039/c3ta10451f.
  • 21. Ahmad, B., Stoyanov, S., Pelan, E., Stride, E. & Edirisinghe, M. Electrospinning of ethyl cellulose fibres with glass and steel needle confi gurations. FOOD Res. Int. 54 (2013) 1761–1772. DOI: 10.1016/j.foodres.2013.09.021.
  • 22. Patil, S.S., Shedbalkar, U.U., Truskewycz, A., Chopade, B.A. & Ball, A.S. Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environ. Technol. Innov. 5 (2016) 10–21. DOI: 10.1016/j.eti.2015.11.001.
  • 23. Steenkamp, G.C., Keizer, K., Neomagus, H.W.J.P. & Krieg, H.M. Copper(II) removal from polluted water with alumina/chitosan composite membranes. J. Memb. Sci. 197 (2002) 147–156. DOI: 10.1016/S0376-7388(01)00608-1.
  • 24. Han, R., Zou, W., Zhang, Z., Shi, J., Yang, J. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand. I. Characterization and kinetic study. J. Hazard. Mater. 137 (2006) 384–395. DOI: 10.1016/j.jhazmat.2006.02.021.
  • 25. Wang, S.G., Gong, W.X., Liu, X.W., Yao, Y.W., Gao, B.Y., Yue, Q.Y. Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep. Purif. Technol. 58 (2007) 17–23. DOI: 10.1016/j.seppur.2007.07.006.
  • 26. Rahmani, A., Mousavi, H.Z., Fazli, M. Effect of nanostructure alumina on adsorption of heavy metals, Desalination. 253 (2010) 94–100. DOI: 10.1016/j.desal.2009.11.027.
  • 27. Medina, M., Tapia, J., Pacheco, S., Espinosa, M., Rodriguez, R. Adsorption of lead ions in aqueous solution using silica-alumina nanoparticles, J. Non. Cryst. Solids. 356 (2010) 383–387. DOI: 10.1016/j.jnoncrysol.2009.11.032.
  • 28. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. & Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 211–212 (2012) 317–331. DOI: 10.1016/j.jhazmat.2011.10.016.
  • 29. Contreras-Bustos, R., Espejel-Ayala, F., Cercado-Quezada, B., Jiménez-Becerril, J. & Jiménez-Reyes, M. Adsorption of Zn2+ from solutions on manganese oxide obtained via ozone precipitation reaction. Polish J. Chem. Technol. 18 (2016) 46–50. DOI: 10.1515/pjct-2016-0008.
  • 30. Gholami, A., Moghadassi, A.R., Hosseini, S.M., Shabani, S. & Gholami, F. Preparation and characterization of polyvinyl chloride based nanocomposite nanofi ltration-membrane modified by iron oxide nanoparticles for lead removal from water. J. Ind. Eng. Chem. 20 (2014) 1517–1522. DOI: 10.1016/j.jiec.2013.07.041.
  • 31. Li, J., Shi, Y., Cai, Y., Mou, S., Jiang, G., Adsorption of di-ethyl-phthalate from aqueous solutions with surfactant-coated nano/microsized alumina. Chem. Eng. J. 140 (2008) 214–220. DOI: 10.1016/j.cej.2007.09.037.
  • 32. Taylor, G. Electrically Driven Jets, Proc. R. Soc. London A. 313 (1969) 453–475. DOI: 10.1098/rspa.1969.0205.
  • 33. Matthews, J.A., Wnek, G.E., Simpson, D.G., Bowlin, G.L. Electrospinning of collagen nanofibers, Biomacromolecules. 3 (2002) 232–238. DOI: 10.1021/bm015533u.
  • 34. Foo, K.Y. & Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156 (2010) 2–10. DOI: 10.1016/j.cej.2009.09.013.
  • 35. Sadeghi Pouya, E., Abolghasemi, H., Esmaieli, M., Fatoorehchi, H., Hashemi, S.J. & Salehpour, A. Batch adsorptive removal of benzoic acid from aqueous solution onto modified natural vermiculite: Kinetic, isotherm and thermodynamic studies. J. Ind. Eng. Chem. 31 (2015) 199–215. DOI: 10.1016/j.jiec.2015.06.024.
  • 36. Alberti, G., Amendola, V., Pesavento, M. & Biesuz, R. Beyond the synthesis of novel solid phases: Review on modelling of sorption phenomena. Coord. Chem. Rev. 256 (2012) 28–45. DOI: 10.1016/j.ccr.2011.08.022.
  • 37. C.H. Giles, D. Smith, A. Huitson, A general treatment and classifi cation of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 47 (1974) 755–765. DOI: 10.1016/0021-9797(74)90252-5.
  • 38. Hamdaoui, O. & Naffrechoux, E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater. 147 (2007) 381–394. DOI: 10.1016/j.jhazmat.2007.01.021.
  • 39. Sari, A. & Tuzen, M. Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 160 (2008) 349–355. DOI: 10.1016/j.jhazmat.2008.03.005.
  • 40. Choong, C.E., Ibrahim, S., Yoon, Y. & Jang, M., Removal of lead and bisphenol A using magnesium silicate impregnated palm-shell waste powdered activated carbon: Comparative studies on single and binary pollutant adsorption. Ecotoxicol. Environ. Saf. 148 (2018) 142–151. DOI: 10.1016/j.ecoenv.2017.10.025.
  • 41. Bediako, J.K., Reddy, D.H.K., Song, M.H., Wei, W., Lin, S. & Yun, Y.S., Preparation, characterization and lead adsorption study of tripolyphosphate-modified waste Lyocell fibers. J. Environ. Chem. Eng. 5 (2017) 412–421. DOI: 10.1016/j.jece.2016.12.022.
  • 42. Georgescu, A.M., Nardou, F., Zichil, V. & Nistor, I.D. Adsorption of lead(II) ions from aqueous solutions onto Cr--pillared clays, Appl. Clay Sci. (2017) 0–1. DOI: 10.1016/j.clay.2017.10.031.
  • 43. Tabesh, S., Davar, F. & Loghman-Estarki, M.R. Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions, Elsevier B.V., 2017. DOI: 10.1016/j.jallcom.2017.09.246.
  • 44. Vijayalakshmi, K., Devi, B.M., Latha, S., Gomathi, T., Sudha, P.N., Venkatesan, J. & Anil, S. Batch adsorption and desorption studies on the removal of lead (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int. J. Biol. Macromol. 104 (2017) 1483–1494. DOI: 10.1016/j.ijbiomac.2017.04.120.
  • 45. Zhang, Y., Cao, B., Zhao, L., Sun, L., Gao, Y., Li, J. & Yang, F. Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Appl. Surf. Sci. 427 (2018) 147–155. DOI: 10.1016/j.apsusc.2017.07.237.
  • 46. Gomez-Gonzalez, R., Cerino-Córdova, F.J., Garcia-León, A.M., Soto-Regalado, E., Davila-Guzman, N.E. & Salazar-Rabago, J.J. Lead biosorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN. J. Taiwan Inst. Chem. Eng. 68 (2016) 201–210. DOI: 10.1016/j.jtice.2016.08.038.
  • 47. Wang, C., Fan, X., Wang, P., Hou, J., Ao, Y. & Miao, L. Adsorption behavior of lead on aquatic sediments contaminated with cerium dioxide nanoparticles. Environ. Pollut. 219 (2016) 416–424. DOI: 10.1016/j.envpol.2016.05.025.
  • 48. Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 54 (1982) 2201–2218. DOI: 10.1351/pac198557040603.
  • 49. Liu, D., Que, G.H., Wang, Z.X., Yan, Z.F. In situ FT-IR study of CO and H2 adsorption on a Pt/Al2O3 catalyst, Catal. Today. 68 (2001) 155–160. DOI: 10.1016/S0920-5861(01)00306-6.
  • 50. Alvar, E.N., Rezaei, M. & Alvar, H.N. Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route. Powder Technol. 198 (2010) 275–278. DOI: 10.1016/j.powtec.2009.11.019.
  • 51. Kao, L.H. & Hsu, T.C. Silica template synthesis of ordered mesoporous carbon thick fi lms with 35-nm pore size from mesophase pitch solution. Mater. Lett. 62 (2008) 695–698. DOI: 10.1016/j.matlet.2007.06.034.
  • 52. Mosquera, M.J., d. los Santos, D.M., Valdez-Castro, L. & Esquivias, L. New route for producing crack-free xerogels: Obtaining uniform pore size. J. Non. Cryst. Solids. 354 (2008) 645–650. DOI: 10.1016/j.jnoncrysol.2007.07.095.
  • 53. Wang, S., Lu, Z., Wang, D., Li, C., Chen, C. & Yin, Y. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 21 (2011) 6365. DOI: 10.1039/c0jm04398b.
  • 54. Gupta, S., Ramamurthy, P.C. & Madras, G. Synthesis and characterization of flexible epoxy nanocomposites reinforced with amine functionalized alumina nanoparticles: a potential encapsulant for organic devices. Polym. Chem. 2 (2011) 221. DOI: 10.1039/c0py00270d.
  • 55. Tangsir, S., Hafshejani, L.D., Lähde, A., Maljanen, M., Hooshmand, A., Naseri, A.A., Moazed, H., Jokiniemi, J. & Bhatnagar, A., Water defluoridation using Al2O3 nanoparticles synthesized by flame spray pyrolysis (FSP) method. Chem. Eng. J. 288 (2016) 198–206. DOI: 10.1016/j.cej.2015.11.097.
  • 56. Huang, L.Y., Yu, D.G., Branford-White, C. & Zhu, L.M. Sustained release of ethyl cellulose micro-particulate drug delivery systems prepared using electrospraying. J. Mater. Sci. 47 (2012) 1372–1377. DOI: 10.1007/s10853-011-5913-x.
  • 57. Es-haghi, H., Mirabedini, S.M., Imani, M. & Farnood, R.R., Preparation and characterization of pre-silane modified ethyl cellulose-based microcapsules containing linseed oil, Colloids Surfaces A Physicochem. Eng. Asp. 447 (2014) 71–80. DOI: 10.1016/j.colsurfa.2014.01.021
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-815a4beb-b8b7-400a-8183-a2ec1388bae9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.