PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Full‑scale experimental investigation on progressive failure characteristics of shield segmental lining connected through segmental joints containing ductile‑iron joint panels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A full-scale experiment was conducted for a deep-buried drainage shield tunnel to be built in Shanghai, focusing on the evolution of mechanical properties and failure process of the segmental lining connected through segmental joints containing ductile-iron joint panels, during the changing process of the inner water pressure and lateral earth pressure. The test results indicate that the damage characteristics of the shield lining are the waterproof failure of the segmental and ring joints, and the concrete cracking failure in the lining. Being diferent from the shield lining without ductile-iron joint panels, the concrete cracks mainly exist around the hand holes of segmental joints. For these kinds of shield tunnel linings containing ductile-iron joint panels, local damage of concrete cracking is prone to occur around the hand holes of segmental joints because of the anchor bars of the joint panels distributed on both sides of the hand holes, and it has a signifcant efect on the lining deformation. In the design of shield linings, efective structural adjustment methods should be adopted to solve this local concrete failure problem.
Rocznik
Strony
art. no. e120
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
autor
  • College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
  • State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
autor
  • College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
  • State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
autor
  • Shanghai Municipal Engineering Design Institute (Group) Co. Ltd., Shanghai 200092, China
autor
  • College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
  • State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
autor
  • Shanghai Municipal Engineering Design Institute (Group) Co. Ltd., Shanghai 200092, China
autor
  • Shanghai Foundation Engineering Group Co. Ltd., Shanghai 200002, China
Bibliografia
  • 1. Zhang ZQ, Li YL, Wang S, Zhang H, Qian Y. Assessing and controlling of boulder deep-hole blasting-induced vibrations to minimize impacts to a neighboring metro shaft. Arch Civ Mech Eng. 2021;21:66. https://doi.org/10.1007/s43452-021-00220-8.
  • 2. Liu X, Zhang C, Zhang CG, Yuan Y. Ultimate load-carrying capacity of the longitudinal joints in segmental tunnel linings. Struct Concr. 2017;18:693-709. https://doi.org/10.1002/suco.201600070.
  • 3. Qiao RJ, Shao ZS, Yuan Y, Zhou H, Guo YB. An analysis model for the temperature and residual stress of tunnel liner exposed to fre. Arch Civ Mech Eng. 2021;21:158. https://doi.org/10.1007/s43452-021-00305-4.4.
  • 4. Tayebi M, Nematzadeh M. Efect of hot-compacted waste nylon fne aggregate on compressive stress-strain behavior of steel fiber-reinforced concrete after exposure to fre: experiments and optimization. Constr Build Mater. 2021;284:122742. https://doi.org/10.1016/j.conbuildmat.2021.122742.
  • 5. Chen XQ, Li XJ, Zhu HH. Condition evaluation of urban metro shield tunnels in Shanghai through multiple indicators multiple causes model combined with multiple regression method. Tunn Undergr Space Technol. 2019;85:170-81. https://doi.org/10.1016/j.tust.2018.11.044.
  • 6. Avanaki MJ, Hoseini A, Vahdani S, de la Fuente A. Numerical-aided design of fber reinforced concrete tunnel segment joints subjected to seismic loads. Constr Build Mater. 2018;170:40-54. https://doi.org/10.1016/j.conbuildmat.2018.02.219.
  • 7. Zheng G, Cui T, Cheng XS, Diao Y, Zhang TQ, Sun JB, Ge LB. Study of the collapse mechanism of shield tunnels due to the failure of segments in sandy ground. Eng Fail Anal. 2017;79:464-90. https://doi.org/10.1016/j.engfailanal.2017.04.030.
  • 8. Liu X, Bai Y, Yuan Y, Herbert AM. Experimental investigation of the ultimate bearing capacity of continuously jointed segmental tunnel linings. Struct Infrastruct Eng. 2016;12(10):1364-79. https://doi.org/10.1080/15732479.2015.1117115.
  • 9. Liu X, Dong ZB, Bai Y, Zhu YH. Investigation of the structural efect induced by stagger joints in segmental tunnel linings: frst results from full-scale ring tests. Tunn Undergr Space Technol. 2017;66:1-18. https://doi.org/10.1016/j.tust.2017.03.008.
  • 10. Chen RP, Chen S, Wu HN, Liu Y, Meng FY. Investigation on deformation behavior and failure mechanism of a segmental ring in shield tunnels based on elaborate numerical simulation. Eng Fail Anal. 2020;117:104960. https://doi.org/10.1016/j.engfailanal.2020.104960.
  • 11. Yan QX, Sun MH, Qing SY, Deng ZX, Dong WJ. Numerical investigation on the damage and cracking characteristics of the shield tunnel caused by derailed high-speed train. Eng Fail Anal. 2020;108:104205. https://doi.org/10.1016/j.engfailanal.2019.104205.
  • 12. Su D, Chen WJ, Wang XT, Huang ML, Pang XC, Chen XS. Numerical study on transverse deformation characteristics of shield tunnel subject to local soil loosening. Undergr Space. 2022;7:106-21. https://doi.org/10.1016/j.undsp.2021.07.001.
  • 13. Wu HC, Huang GR, Meng QQ, Zhang MZ, Li LC. Deep tunnel for regulating combined sewer overfow pollution and food disaster: a case study in Guangzhou city, China. Water. 2016;8:329. https://doi.org/10.3390/w8080329.
  • 14. Zhou L, Zhu HH, Yan ZG, Shen Y, Meng H, Guan LX, Wen ZY. Experimental testing on ductile-iron joint panels for high-stifness segmental joints of deep-buried drainage shield tunnels. Tunn Undergr Space Technol. 2019;87:145-59. https://doi.org/10.1016/j.tust.2019.02.009.
  • 15. Zhang ZX, Yin T, Huang X, Zhang F, Zhu YT, Liu W. Identifcation and visualization of the full-ring deformation characteristics of a large stormwater sewage and storage tunnel using terrestrial laser scanning technology. Energies. 2019;12(7):1304. https://doi. org/10.3390/en12071304.
  • 16. Zhang ZX, Liu W, Zhuang QW, Huang X, Wang SF, Zhang C, Zhu YT, Kwok CY. A novel testing setup for determining the fexural properties of tunnel segmental joints: development and application. Arch Civ Mech Eng. 2019;19(3):724-38. https://doi. org/10.1016/j.acme.2019.02.003.
  • 17. Luttikholt A. Ultimate limit state analysis of a segmented tunnel lining-results of full-scale tests compared to fnite element analysis. Delft: Delft University of Technology; 2007.
  • 18. Huang X, Liu W, Zhang ZX, Wang Q, Wang SF, Zhuang QW, Zhu YT, Zhang C. Exploring the three-dimensional response of a water storage and sewage tunnel based on full-scale loading tests. Tunn Undergr Space Technol. 2019;88:156-68. https://doi.org/10.1016/j.tust.2019.03.003.
  • 19. Huang X, Liu W, Zhang ZX, Zhuang QW, Zhu YF, Wang Q, Kwok CY, Wang SF. Structural behavior of segmental tunnel linings for a large stormwater storage tunnel: insight from full-scale loading tests. Tunn Undergr Space Technol. 2020;99:103376. https://doi.org/10.1016/j.tust.2020.103376.
  • 20. Zhang ZX, Liu W, Huang X, Wang SF. Exploring the three-dimensional response of water storage and sewage tunnel based on 3D fnite element modeling. Tunn Undergr Space Technol. 2022;120:104269. https://doi.org/10.1016/j.tust.2021.104269.
  • 21. Fan SY, Song ZP,·Xu T, Wang KM, Zhang YW,. Tunnel deformation and stress response under the bilateral foundation pit construction: a case study. Arch Civ Mech Eng. 2021;21:109-10. https://doi.org/10.1007/s43452-021-00259-7.
  • 22. Mitew-Czajewska M. A study of displacements of structures in the vicinity of deep excavation. Arch Civ Mech Eng. 2019;19:547-56. https://doi.org/10.1016/j.acme.2018.11.010.
  • 23. Zhou SH, Liu C, Li X, Jin H. Reverse calculation and analysis of measured internal force of deeply buried shield tunnels with large cross-section under high water pressure conditions. J Tongji Univ (Nat Sci). 2017;45(7):970-7. https://doi.org/10.11908/j.issn. 0253-374x.2017.07.005.
  • 24. Bilotta E, Russo G. Internal forces arising in the segmental lining of an earth pressure balance-bored tunnel. J Geotech Geoenviron Eng. 2013;139(10):1765-80. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000906.
  • 25. Ding WQ, Chen XQ, Jin YL, Qiao YF. Flexural behavior of segmental joint containing double rows of bolts: experiment and simulation. Tunn Undergr Space Technol. 2021;112:103940. https://doi.org/10.1016/j.tust.2021.103940.
  • 26. Huang HW, Chen W, Zhou ML, Chen JY, Zhao S. Towards automated 3D inspection of water leakages in shield tunnel linings using mobile laser scanning data. Sensors. 2020;20:6669. https://doi.org/10.3390/s20226669.
  • 27. Zhang DM, Zhai WZ, Huang HW, Chapman D. Robust retro-fitting design for rehabilitation of segmental tunnel linings: using the example of steel plates. Tunn Undergr Space Technol. 2019;83:231-42. https://doi.org/10.1016/j.tust.2018.09.016.
  • 28. Zhu MQ, Ding WQ, Jin YL, Gong CJ, Shen Y. Experimental study of segment joint sealing gasket forms of deep drainage shield tunnel in Shanghai under high water pressure. Tunnel Constr. 2017;37(10):1303-8. https://doi.org/10.3973/j.issn.1672-741X.2017.10.014.
  • 29. Zhong XC, Zhang JR, Qin JS, Zhu W. Simplifed calculation model for longitudinal equivalent bending stifness of shield tunnel and its influence factors’ analysis. Rock Soil Mech. 2011;32(1):132-6. https://doi.org/10.16285/j.rsm.2011.01.018.
  • 30. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures (GB 50010-2020). Beijing: China Architecture and Building Press; 2010.
  • 31. Tayebi M, Nematzadeh M. Post-fre fexural performance and microstructure of steel fber-reinforced concrete with recycled nylon granules and zeolite substitution. Structures. 2021;33:2301-16. https://doi.org/10.1016/j.istruc.2021.05.080.
  • 32. Jin YL, Ding WQ, Yan ZG, Soga K, Li ZL. Experimental investigation of the nonlinear behavior of segmental joints in a water-conveyance tunnel. Tunn Undergr Space Technol. 2017;68:153-66. https://doi.org/10.1016/j.tust.2017.05.018.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-815274fe-ba9e-41f3-918e-31552403ce0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.