PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

HgCdTe energy gap determination from photoluminescence and spectral response measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The temperature dependence of photoluminescence spectra has been studied for the HgCdTe epilayer. At low temperatures, the signal has plenty of band-tail states and shallow/deep defects which makes it difficult to evaluate the material bandgap. In most of the published reports, the photoluminescence spectrum containing multiple peaks is analyzed using a Gaussian fit to a particular peak. However, the determination of the peak position deviates from the energy gap value. Consequently, it may seem that a blue shift with increasing temperature becomes apparent. In our approach, the main peak was fitted with the expression proportional to the product of the joint density of states and the Boltzmann distribution function. The energy gap determined on this basis coincides in the entire temperature range with the theoretical Hansen dependence for the assumed Cd molar composition of the active layer. In addition, the result coincides well with the bandgap energy determined on the basis of the cut-off wavelength at which the detector response drops to 50% of the peak value.
Rocznik
Strony
183--194
Opis fizyczny
Bibliogr. 26 poz., rys., wykr., wzory
Twórcy
  • Military University of Technology, Institute of Applied Physics, 2 Kaliskiego St., 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Applied Physics, 2 Kaliskiego St., 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Applied Physics, 2 Kaliskiego St., 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Applied Physics, 2 Kaliskiego St., 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Applied Physics, 2 Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Finkman, E., & Nemirovsky, Y. (1979). Infrared optical absorption of Hg1-𝑥 Cd𝑥 Te. Journal of Applied Physics, 50(6), 4356-4361. https://doi.org/10.1063/1.326421
  • [2] Rogalski, A., Kopytko, M., Martyniuk, P., & Hu, W. (2020). Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors. Opto-Electronics Review, 82-92. https://doi.org/10.24425/opelre.2020.132504
  • [3] Schmit, J. L., & Stelzer, E. L. (1969). Temperature and Alloy Compositional Dependences of the Energy Gap of Hg1-𝑥 Cd𝑥 Te. Journal of Applied Physics, 40(12), 4865-4869. https://doi.org/10.1063/1.1657304
  • [4] Wiley, J. D., & Dexter, R. N. (1969). Helicons and Nonresonant Cyclotron Absorption in Semiconductors. II. Hg1-𝑥 Cd𝑥 Te. Physical Review, 181(3), 1181. https://doi.org/10.1103/PhysRev.181.1181
  • [5] Weiler, M. H. (1981). Defects, (HgCd) Se, (HgCd) Te. In R. K. Willardson, & A. C. Beer (Eds.), Semiconductors and Semimetals. Academic Press.
  • [6] Scott, M. W. (1969). Energy gap in Hg1-𝑥 Cd𝑥 Te by optical absorption. Journal of Applied Physics, 40(10), 4077-4081. https://doi.org/10.1063/1.1657147
  • [7] Hansen, G. L., & Schmit, J. L. (1982). Calculation of intrinsic carrier concentration in Hg1-𝑥 Cd𝑥 Te. Journal of Applied Physics, 54(3), 1639-1640. https://doi.org/10.1063/1.330018
  • [8] Zhang, X., Shao, J., Chen, L., Lü, X., Guo, S., He, L., & Chu, J. (2011). Infrared photoluminescence of arsenic-doped HgCdTe in a wide temperature range of up to 290 K. Journal of Applied Physics, 110(4), 043503. https://doi.org/10.1063/1.3622588
  • [9] Ivanov-Omskii, V. I., Mynbaev, K. D., Bazhenov, N. L., Smirnov, V. A., Mikhailov, N. N., Sidorov, G. Y., ... & Dvoretsky, S. A. (2010). Optical properties of molecular beam epitaxy-grown HgCdTe structures with potential wells. Physica Status Solidi C, Current Topics in Solid State Physics, 7(6), 1621-1623. https://doi.org/10.1002/pssc.200983186
  • [10] Gemain, F., Robin, I. C., Brochen, S., Ballet, P., Gravrand, O., & Feuillet, G. (2013). Arsenic complexes optical signatures in As-doped HgCdTe. Applied Physics Letters, 102(14), 142104. https://doi.org/10.1063/1.4801500
  • [11] Shao, J., Lu, W., Tsen, G. K. O., Guo, S., & Dell, J. M. (2012). Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice. Journal of Applied Physics, 112(6), 063512. https://doi.org/10.1063/1.4752869
  • [12] Steenbergen, E. H., Massengale, J. A., Ariyawansa, G., & Zhang, Y. H. (2016). Evidence of carrier localization in photoluminescence spectroscopy studies of mid-wavelength infrared InAs/InAs1-𝑥 Sb𝑥 type-II superlattices. Journal of Luminescence, 178, 451-456. https://doi.org/10.1016/j.jlumin.2016.06.020
  • [13] Shao, J., Yue, F., Lü, X., Lu, W., Huang, W., Li, Z., Guo, S. & Chu, J. (2006). Photomodulated infrared spectroscopy by a step-scan Fourier transform infrared spectrometer. Applied Physics Letters, 89(18), 182121. https://doi.org/10.1063/1.2378675
  • [14] Shao, J., Chen, L., Lü, X., Lu, W., He, L., Guo, S., & Chu, J. (2009). Realization of photoreflectance spectroscopy in very-long wave infrared of up to 20 μ m. Applied Physics Letters, 95(4), 041908. https://doi.org/10.1063/1.3193546
  • [15] Motyka, M., Sęk, G., Misiewicz, J., Bauer, A., Dallner, M., Höfling, S., & Forchel, A. (2009). Fourier transformed photoreflectance and photoluminescence of mid infrared GaSb-based type II quantum wells. Applied Physics Express, 2(12), 126505. http://dx.doi.org/10.1143/APEX.2.126505
  • [16] Motyka, M., Sęk, G., Janiak, F., Misiewicz, J., Kłos, K., & Piotrowski, J. (2011). Fourier-transformed photoreflectance and fast differential reflectance of HgCdTe layers. The issues of spectral resolution and Fabry-Perot oscillations. Measurement Science and Technology, 22(12), 125601. http://dx.doi.org/10.1088/0957-0233/22/12/125601
  • [17] Lin, C. T., Brown, G. J., Mitchel, W. C., Ahoujja, M., & Szmulowicz, F. (1998, April). Mid-infrared photodetectors based on the InAs/InGaSb type-II superlattices. In Photodetectors: Materials and Devices III (Vol. 3287, pp. 22-29). SPIE. https://doi.org/10.1117/12.304487
  • [18] Smith, E. P. G., Venzor, G. M., Petraitis, Y., Liguori, M. V., Levy, A. R., Rabkin, C. K., ... & Bangs, J. W. (2007). Fabrication and characterization of small unit-cell molecular beam epitaxy grown HgCdTe-on-Si mid-wavelength infrared detectors. Journal of Electronic Materials, 36(8), 1045-1051. https://doi.org/10.1007/s11664-007-0169-6
  • [19] Hougen, C. A. (1989). Model for infrared absorption and transmission of liquid-phase epitaxy HgCdTe. Journal of Applied Physics, 66(8), 3763-3766. https://doi.org/10.1063/1.344038
  • [20] Plis, E., Annamalai, S., Posani, K. T., Lee, S. J., & Krishna, S. (2006, May). Room temperature operation of InAs/GaSb SLS infrared photovoltaic detectors with cut-off wavelength ~5 μm. In Infrared Technology and Applications XXXII (Vol. 6206, pp. 225-233). SPIE. https://doi.org/10.1117/12.669172
  • [21] Martienssen, W. (1957). Über die excitonenbanden der alkalihalogenidkristalle. Journal of Physics and Chemistry of Solids, 2(4), 257-267. https://doi.org/10.1103/PhysRev.92.1324
  • [22] Rogalski, A. (2010). Infrared Detectors (2nd ed.). CRC Press.
  • [23] Fang, Z. M., Ma, K. Y., Jaw, D. H., Cohen, R. M., & Stringfellow, G. B. (1990). Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy. Journal of Applied Physics, 67(11), 7034-7039. https://doi.org/10.1063/1.345050
  • [24] Merrick, M., Cripps, S. A., Murdin, B. N., Hosea, T. J. C., Veal, T. D., McConville, C. F., & Hopkinson, M. (2007). Photoluminescence of InNAs alloys: S-shaped temperature dependence and conduction-band nonparabolicity. Physical Review B, 76(7), 075209. https://doi.org/10.1103/76.075209
  • [25] Latkowska, M., Kudrawiec, R., Janiak, F., Motyka, M., Misiewicz, J., Zhuang, Q., ... & Walukiewicz, W. (2013). Temperature dependence of photoluminescence from InNAsSb layers: The role of localized and free carrier emission in determination of temperature dependence of energy gap. Applied Physics Letters, 102(12), 122109. https://doi.org/10.1063/1.4798590
  • [26] Fuchs, F., & Koidi, P. (1991). Carrier localization in low-bandgap Hg1-𝑥 Cd𝑥 Te crystals, studied by photoluminescence. Semiconductor Science and Technology, 6(12C), C71. https://doi.org/10.1088/0268-1242/6/12C/013
Uwagi
1. This work was financed by the National Centre for Research and Development (Poland), Grant no. RPMA.01.02.00-14/b451/18.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-814eb9b2-8abe-49c2-b7e6-8815593037c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.