PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic analysis on disproportionation process of cyclohexylamine to dicyclohexylamine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work deals with a study of the effect of temperature on the cyclohexylamine disproportionation to dicyclohexy-lamine, conjointly with the thermodynamic analysis of this process. The laboratory experiments were carried out in a glass tubular continuous-flow reactor in a gaseous phase at the reaction temperature 433–463 K over a nickel catalyst. The results show, that the temperature has a trifing effect on equilibrium conversion of cyclohexylamine. However, temperature affects the formation of hydrocarbons, benzene and cyclohexane, and dehydrogenation products of dicyclohexylamine, i.e. N-cyclohexylidenecyclohexanamine and N-phenylcyclohexylamine. The latter one is the dominant product of dicyclohexylamine dehydrogenation. The disproportionation of cyclohexylamine has slightly exothermic character. At the experimental reaction temperature range, the cyclohexylamine disproportionation is spontaneous reaction and other reactions of this process are non-spontaneous.
Rocznik
Strony
43--48
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
  • Department of Organic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
  • Department of Organic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
  • Department of Organic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
Bibliografia
  • 1. Börner, T., Rehn, G., Grey, C. & Adlercreutz, P. (2015). A Process Concept for High-Purity Production of Amines by Transaminase-Catalyzed Asymmetric Synthesis: Combining Enzyme Cascade and Membrane-Assisted ISPR. Org. Process Res. Dev. 19(7), 793–799. DOI:10.1021/acs.oprd.5b00055.
  • 2. Liang, G., Wang, A., Li, L., Xu, G., Yan, N. & Zhang, T. (2017). Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones. Angew. Chem. Int. Ed. 56(11), 3050–3054. DOI: 10.1002/anie.201610964.
  • 3. Hayes, K.S. (2001). Industrial processes for manufacturing amines. Appl. Catal., A. 221, 187–195. DOI: 10.1016/S0926-860X(01)00813-4.
  • 4. Li, X., Wang, Z., Mao, S., Chen, Y., Tang, M., Li, H. & Wang, Y. (2018). Insight into the Role of Additives in Catalytic Synthesis of Cyclohexylamine from Nitrobenzene. Chin. J. Chem. 36(12), 1191–1196. DOI: 10.1002/cjoc.201800380.
  • 5. Araki, S., Nakanishi, K., Tanaka, A. & Kominami, H. (2020). A ruthenium and palladium bimetallic system superior to a rhodium co-catalyst for TiO2-photocatalyzed ring hydrogenation of aniline to cyclohexylamine. J. Catal. 389, 212–217. DOI: 10.1016/j.jcat.2020.05.035.
  • 6. Pan, M., Wang, W., Zhou, Q., Zhang, J. & Zhang, Q. (2018). Analysis and Detection of Gas Phase Corrosion Inhibitor Dicyclohexylamine Ion. Adv. Anal. Chem. 8(3), 124–128. DOI: 10.12677/aac.2018.83015.
  • 7. Roose, P., Eller, K., Henkes, E., Rossbacher, R. & Höke, H. (2015). Amines, Aliphatic. In Ullmann’s Encyclopedia of Industrial Chemistry. Weinhelm, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/14356007.a02_001.pub2.
  • 8. Narayanan, S. & Unnikrishnan, R.P. (1997). Comparison of hydrogen adsorption and aniline hydrogenation over co-precipitated Co/Al2O3 and Ni/Al2O3 catalysts. J. Chem. Soc., Faraday Trans. 93(10), 2009–2013. DOI: 10.1039/A608074J.
  • 9. Hagihara, H. & Echigoya, E. (1965). The Catalytic Hydrogenation of Aniline. Bull. Chem. Soc. Jpn. 38(12), 2094–2100. DOI: 10.1246/bcsj.38.2094.
  • 10. Vedage, G.A. & Armor, J.N. (1995). U.S. Patent No. 5,567,847.
  • 11. Greenfield, H. (1964). Hydrogenation of Aniline to Cyclohexylamine with Platinum Metal Catalysts. J. Org. Chem. 29(10), 3082–3084. DOI:10.1021/jo01033a512.
  • 12. Taniguchi, K., Jin, X., Yamaguchi, K. & Mizuno, N. (2016). Facile access to N-substituted anilines via dehydrogenative aromatization catalysis over supported gold–palladium bimetallic nanoparticles. Catal. Sci. Technol. 6, 3929–3937. DOI: 10.1039/C5CY01908G.
  • 13. Mink, G. & Horváth, L. (1998). Hydrogenation of aniline to cyclohexylamine on NaOH-promoted or lanthana supported nickel. React. Kinet. Catal. Lett. 65(1), 59–65. DOI: 10.1007/BF02475316.
  • 14. Popov, Y.V., Shishkin, E.V., Latyshova, S.E., Panchekhin, V.A. & Zlatogorskaya, M.K. (2009). RU. Patent No. 2, 408, 573.
  • 15. Popov, Y.V., Mokhov, V.M., Latyshova, S.E., Nebykov, D.N., Panov, A.O. & Davydova, T.M. (2017). Colloid and Nanosized Catalysts in Organic Synthesis: XVIII.1 Disproportionation and Cross-Coupling of Amines During Catalysis with Immobilized Nickel Nanoparticles. Russ. J. Gen. Chem. 87(12), 2757–2761. DOI: 10.1134/S1070363217120015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-814d236b-5a3f-4a4f-aa8d-a8fe24b6cf83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.