PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Damage induced by viscoplastic waves interaction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Jubilee Symposium Vibrations In Physical Systems (25 ; 15-19.05.2012 ; Będlewo koło Poznania ; Polska)
Języki publikacji
EN
Abstrakty
EN
Viscoplastic waves interaction plays a fundamental role in a strain localisation phenomenon especially during highly dynamic processes occurring for example during car or orbiting space objects crashes (strain rates locally reach the values of order 107 s-1 In zones of localised deformation an intensive evolution of damage occurs which is undoubtedly directional (anisotropic) and finally may cause failure (loss of continuity). Such processes are highly influenced by the temperature (reaching often melting points) and mostly under adiabatic conditions. Mathematical description of the mentioned phenomena formulated in terms of Perzyna's thermoviscoplasticity is considered in this paper.
Rocznik
Tom
Strony
23--32
Opis fizyczny
Bibliogr. 25 poz., il. kolor., wykr.
Twórcy
  • Poznan University of Technology, Institute of Structural Engineering Centre, for Mechatronics, Biomechanics and Nanotechnology Poznan, Poland
autor
  • Poznan University of Technology, Institute of Structural Engineering Centre, for Mechatronics, Biomechanics and Nanotechnology Poznan, Poland
Bibliografia
  • 1. Abaqus Version 6.11 Theory Manual. 2011.
  • 2. X. Boidin, P. Chevrier, J.R. Klepaczko, and Sabar H. Identification of damage mech-anism and validation of a fracture model based on mesoscale approach in spalling of titanium alloy. International Journal of Solids and Structures, 43(14-15) (2006) 4029-4630.
  • 3. A. Glema. Analiza natury falowej zjawiska lokalizacji odkształceń plastycznych wciałach stałych, volume 379 of Rozprawy. Publishing House of Poznan University of Technology, 2004. (in Polish).
  • 4. A. Glema, T. Łodygowski, and P. Perzyna. Numerical investigation of dynamic shearbands in inelastic solids as a problem of mesomechanics. Computational Mechanics, 41(2) (2008) 219-229.
  • 5. A. Glema, T. Łodygowski, and W. Sumelka. Nowacki’s double shear test in the framework of the anisotropic thermo-elasto-vicsoplastic material model. Journal of Theoretical and Applied Mechanics, 48(4) (2010) 973-1001.
  • 6. A. Glema, T. Łodygowski, W. Sumelka, and P. Perzyna. The numerical analysis ofthe intrinsic anisotropic microdamage evolution in elasto-viscoplastic solids. International Journal of Damage Mechanics, 18(3) (2009) 205-231.
  • 7. H.A. Grebe, H.-R. Pak, and Meyers M.A. Adiabatic shear localization in titanium and Ti-6 pct Al-4 pct V alloy. Metallurgical and Materials Transactions A, 16(5) (1985) 761-775.
  • 8. P.R. Guduru, A.J. Rosakis, and G. Ravichandran. Dynamic shear bands: an investigation using high speed optical and infrared diagnostic. Mechanics of Materials, 33 (2001) 371-402.
  • 9. E.H. Lee. Elastic-plastic deformation at finite strain. ASME Journal of Applied Mechanics, 36 (1969) 1-6.
  • 10. J.E. Marsden and T.J.H Hughes. Mathematical Foundations of Elasticity. Prentice-Hall, New Jersey, 1983.
  • 11. R. Narayanasamy, N.L. Parthasarathi, and C.S. Narayanan. Effect of microstructureon void nucleation and coalescence during forming of three different HSLA steelsheets under different stress conditions. Materials and Design, 30 (2009) 1310-1324.
  • 12. S. Nemat-Nasser and W.-G. Guo. Thermomechanical response of HSLA-65 steelplates: experiments and modeling. Mechanics of Materials, 37 (2005) 379-405.
  • 13. T. Łodygowski. Theoretical and numerical aspects of plastic strain localization, volume 312 of D.Sc. Thesis. Publishing House of Poznan University of Technology, 1996.
  • 14. T. Łodygowski and P. Perzyna. Localized fracture of inelastic polycrystalline solidsunder dynamic loading process. International Journal Damage Mechanics, 6 (1997) 364-407.
  • 15. T. Łodygowski and P. Perzyna. Numerical modelling of localized fracture of inelasticsolids in dynamic loading process. International Journal for Numerical Methods in Engineering, 40 (1997) 4137-4158.
  • 16. P. Perzyna. Internal state variable description of dynamic fracture of ductile solids. International Journal of Solids and Structures, 22 (1986) 797-818.
  • 17. P. Perzyna. Instability phenomena and adiabatic shear band localization in thermoplastic flow process. Acta Mechanica, 106 (1994) 173-205.
  • 18. P. Perzyna. The thermodynamical theory of elasto-viscoplasticity. Engineering Transactions, 53 (2005) 235-316.
  • 19. P. Perzyna. The thermodynamical theory of elasto-viscoplasticity accounting for microshear banding and induced anisotropy effects. Mechanics, 27(1) (2008) 25-42.
  • 20. L. Seaman, D.R. Curran, and D.A. Shockey. Computational models for ductile and brittle fracture. Journal of Applied Physics, 47(11) (1976) 4814-4826.
  • 21. D.A. Shockey, L. Seaman, and D.R. Curran. Metallurgical effects at high strain rates, volume 473. Plenum Press, New York, r.w. rohde, b.m. butchler, j.r. Holland and c.h. karbes edition, 1973.
  • 22. J-H Song, H. Wang, and T. Belytschko. A comparative study on finite element methods for dynamic fracture. Computational Mechanics, 42 (2008) 239-250.
  • 23. W. Sumelka. The Constitutive Model of the Anisotropy Evolution for Metals with Microstructural Defects. Publishing House of Poznan University of Technology, Poznań, Poland, 2009.
  • 24. W. Sumelka and T. Łodygowski. The influence of the initial microdamage anisotropyon macrodamage mode during extremely fast thermomechanical processes. Archive of Applied Mechanics, 81(12) (2011) 1973-1992.
  • 25. C. Truesdell and W. Noll. The non-linear field theories of mechanics. In: Handbuchder Physik, vol. III/3. Springer-Verlag, Berlin, S. Flügge Ed, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-814a9f79-ed16-4368-bafc-70bb3b7e57ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.