PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of antibacterial properties of ceramic substrates coated with calcium phosphate and polymeric nanoparticles loaded with antibiotics

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates a biomimetic method of deposition of bioactive calcium phosphate (CaP) layers on zirconium oxide substrates (ZrO2). The substrates contained polymer nanoparticles of poly(L-lactide-co-glycolide) (PLGA) obtained using the double emulsion method with solvent evaporation. Three antibiotics were encapsulated within the nanoparticles: bacitracin, gentamicin sulphate, and hydrophobic gentamicin, prepared with the use of the ion pairing method. Nanoparticles were immobilized on the substrates using the drop casting or the co-deposition method. The microstructure of the layers and the distribution of the nanoparticles were assessed by scanning electron microscopy. The nanoparticles size and their zeta potential were measured using the dynamic light scattering method. The release of drugs over time was examined and the antibacterial properties were evaluated in contact with Staphylococcus aureus bacteria using the spectrophotometric method and the Kirby-Bauer test. The results show that the layer deposition method is effective and allows to obtain homogenous bioactive coatings. Nanoparticles were agglomerated on the surface or homogenously distributed in the CaP coating, depending on the process used to immobilize them. The drug release profile and antibacterial properties can also be modified by changing the process – the drop casting method allows to obtain a coating with a stronger antimicrobial effect and faster drug release. Nanoparticles obtained by the double emulsion method with solvent evaporation have the required size to be immobilized between the CaP crystallites. Additionally, the encapsulation of drugs decreased the zeta potential of the nanoparticles, which was caused by the interaction of the drug and the polymer. Nanoparticles loaded with bacitracin showed weak antibacterial properties, as the growth inhibition zone in the Kirby-Bauer test was barely visible. Two other types of nanoparticles exhibited good antibacterial properties, exceptionally strong for those loaded with hydrophobic gentamicin
Rocznik
Strony
11--17
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., zdj.
Twórcy
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Pudełko I., Moskwik A., Kwiecień K., Kriegseis S., KrokBorkowicz M., Schickle K., Ochońska D., Dobrzyński P., BrzychczyWłoch M., Gonzales-Julian J., Pamuła E.: Porous zirconia scaffolds functionalized with calcium phosphate layers and PLGA nanoparticles loaded with hydrophobic gentamicin. International Journal of Molecular Sciences 24(9) (2023) 8400.
  • [2] Glauser R., Schupbach P.: Early bone formation around immediately placed two-piece tissue-level zirconia implants with a modified surface: an experimental study in the miniature pig mandible. International Journal of Implant Dentistry 8(1) (2022) 37.
  • [3] Nair R., Schweizer M.L., Singh N.: Septic arthritis and prosthetic joint infections in older adults. Infectious Disease Clinics of North America 31(4) (2017) 715-729.
  • [4] Alder K.D., Lee I., Munger A.M., Kwon H.-K., Morris M.T., Cahill S.V., Back J., Yu K.E., Lee F.Y.: Intracellular Staphylococcus aureus in bone and joint infections: a mechanism of disease recurrence, inflammation, and bone and cartilage destruction. Bone 141 (2020) 115568.
  • [5] Pontes A.P., Welting T.J.M., Rip J., Creemers L.B.: Polymeric nanoparticles for drug delivery in osteoarthritis. Pharmaceutics 14(12) (2022) 2639.
  • [6] Aguilera-Correa J.J., Gisbert-Garzarán M., Mediero A., FernándezAceñero M.J., de-Pablo-Velasco D., Lozano D., Esteban J., Vallet-Regí M.: Antibiotic delivery from bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis caused by methicillin-resistant Staphylococcus aureus. Acta Biomaterialia 154 (2022) 608-625.
  • [7] Jiang T., Yu X., Carbone E.J., Nelson C., Kan H.M., Lo K. W.-H.: Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications. International Journal of Pharmaceutics 475 (2014) 547-557.
  • [8] Thu M.K., Kang Y.S., Kwak J.M., Jo Y.-H., Han J.-S., Yeo I.-S.L.: Comparison between bone–implant interfaces of microtopographically modified zirconia and titanium implant. Scientific Reports 13(1) (2023) 11142.
  • [9] Zhao Y., Li P., Dong P., Zeng Y., Chen J.: Investigation on 3D printing ZrO2 implant abutment and its fatigue performance simulation. Ceramics International 47(1) (2021) 1053-1062.
  • [10] Idaszek J., Jaroszewicz J., Choińska E., Górecka Z., Hyc A., Osiecka-Iwan A., Wieluńska-Kuś B., Święszkowski W., Moskalewski S.: Toward osteomimetic formation of calcium phosphate coatings with carbonated hydroxyapatite. Biomaterials Advances 149 (2023) 213403.
  • [11] Tas A.C., Bhaduri S.B.: Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10× simulated body fluid. Journal of Materials Research 19(9) (2004) 2742-2749.
  • [12] Costa D.O., Allo B.A., Klassen R., Hutter J.L., Dixon S.J., Rizkalla A.S.: Control of surface topography in biomimetic calcium phosphate coatings. Langmuir 28(8) (2012) 3871-3880.
  • [13] Dziadek M., Zagrajczuk B., Menaszek E., Cholewa-Kowalska K.: A new insight into in vitro behaviour of poly(ε-caprolactone)/bioactive glass composites in biologically related fluids. Journal of Materials Science 53(6) (2018) 3939-3958.
  • [14] Nandi S.K., Bandyopadhyay S., Das P., Samanta I., Mukherjee P., Roy S., Kundu B.: Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnology Advances 34(8) (2016) 1305-1317.
  • [15] Wang Y., Yuan Q., Feng W., Pu W., Ding J., Zhang H., Li X., Yang B., Dai Q., Cheng L., Wang J., Sun F., Zhang D.: Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. Journal of Nanobiotechnology 17(1) (2019) 103.
  • [16] Sur S., Rathore A., Dave V., Reddy K.R., Chouhan R.S., Sadhu V.: Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects 20 (2019) 100397.
  • [17] Deirram N., Zhang C., Kermaniyan S.S., Johnston A.P.R., Such G.K.: pH‐Responsive polymer nanoparticles for drug delivery. Macromolecular Rapid Communications 40(10) (2019) 1800917.
  • [18] Kwiecień K., Pudełko I., Knap K., Reczyńska-Kolman K., Krok-Borkowicz M., Ochońska D., Brzychczy-Włoch M., Pamuła E.: Insight in superiority of the hydrophobized gentamycin in terms of antibiotics delivery to bone tissue. International Journal of Molecular Sciences 23(20) (2022) 12077.
  • [19] Pudełko I., Desante G., Pamuła E., Schickle K., Krok-Borkowicz M.: The encapsulation of antibacterial drugs in polymer nanoparticles and their use in drug delivery systems on ZrO2 scaffold with bioactive coating. Engineering of Biomaterials 161 (2021) 21-27.
  • [20] Uchida M., Kim H.-M., Kokubo T., Nawa M., Asano T., Tanaka K., Nakamura T.: Apatite‐forming ability of a zirconia/alumina nano‐composite induced by chemical treatment. Journal of Biomedical Materials Research 60(2) (2002) 277-282.
  • [21] Ciocilteu M.-V., Nicolaescu O. E., Mocanu A. G., Nicolicescu C., Rau G., Neamtu J., Amzoiu E., Amzoiu E., Oancea C., Turcu-Stiolica A.: Process optimization using quality by design (QBD) approach of a gentamicin loaded PLGA biocomposite. Journal of Science and Arts 21(4) (2021) 1069-1080.
  • [22] Posadowska U., Brzychczy-Włoch M., Pamuła E.: Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta of Bioengineering and Biomechanics 17(3) (2015).
  • [23] Imbuluzqueta E., Gamazo C., Lana H., Campanero M.- Á., Salas D., Gil A.G., Elizondo E., Ventosa N., Veciana J., Blanco-Prieto M.J.: Hydrophobic Gentamicin-Loaded Nanoparticles are Effective against Brucella melitensis Infection in Mice. Antimicrobial Agents and Chemotherapy 57(7) (2013) 3326-3333.
  • [24] Dadpour S., Hosseini Doust R.: Synergistic Effects of Gold Nanoparticles Mixed with Gentamicin, Erythromycin, Clindamycin, Bacitracin, and Polymyxin B against Staphylococcus aureus, Staphylococcus saprophyticus, Staphylococcus epidermidis, Enterococcus faecium and Enterococcus faecalis. Iranian Journal of Medicinal Microbiology 16(4) (2022) 324-335.
  • [25] Ter Boo G.A., Grijpma D.W., Richards R.G., Moriarty T.F., Eglin D.: Preparation of gentamicin dioctyl sulfosuccinate loaded poly(trimethylene carbonate) matrices intended for the treatment of orthopaedic infections. Clinical Hemorheology and Microcirculation 60(1) (2015) 89-98.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8147fde8-ca0d-4726-9b75-d077234a57f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.