PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On-board electric vehicles electricity production by high-efficiency internal combustion engines

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Możliwości ładowania alkumulatora samochodu elektrycznego przy wykorzystaniui wewnętrznego silnika spalinowego
Języki publikacji
EN
Abstrakty
EN
Data of energy economy of battery electric vehicles without a range extender internal combustion engines (BEV) and with a range extender internal combustion engine (BEVx) are reviewed and integrated with simulations by models. A BEV with an on-board, high efficiency, electricity generator based on a positive ignition (PI) internal combustion engine (ICE) is then proposed as a way to improve the uptake of the BEV improving their range and performance as well as their economic and environmental impact. The small ICE, that is working continuously, stationary, fixed load and speed, and the generator similarly optimized for a single point operation, permit an efficiency fuel chemical-to-electric approaching 50%. This is much better than producing electricity centralized from combustion fuels (average efficiency with included distribution and recharging losses at about 30%), and it does not require any electric recharging infrastructure. Simple but reliable extrapolations from the production BEV and BEVx of different battery capacity on the same vehicle platform, plus the simulations, demonstrate that this BEVy may deliver miles-per-gallon (MPG) working gasoline 13% better than any present plug-in-hybrid-electric-vehicle (PHEV) currently available, and MPGe (MPG-equivalent) working electric 12% better than the existing BEV on the same platform with a larger battery pack and no range extender, or 27% better than the BEVx on the same platform with a larger battery pack and range extender. Finally, this BEVy may permit a range over 600 miles with 10 gallons of gasoline onboard, in line with the best PHEV currently available.
PL
W artykule analizowano możliwości wykorzystania wewnętrznego silnika spalinowego o dużej efektywności do ładowania akumulatora. Możliwości te analizowano dla różnych modeli samochodu. Porówanno też tego typu rozwiązanie z samochodami hybrydowymi.
Rocznik
Strony
85--90
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Kingdom of Saudi Arabia
Bibliografia
  • [1] Boretti, A., “Life cycle analysis comparison of electric and internal combustion engine-based mobility,” SAE Technical Paper 2018-28-0037, 2018.
  • [2] International energy agency (IEA), “Key World Energy Statistics (2018),” webstore.iea.org/key-world-energy-statistics- 2018, accessed January 1, 2020.
  • [3] Boretti, A. and Castelletto, S., Cost of wind energy generation should include energy storage allowance, Scientific Reports, 10:2978, 2020. doi.org/10.1038/s41598-020-59936-x
  • [4] Boretti, A., Energy storage needs for an Australian National Electricity Market grid without combustion fuels, Energy Storage. First Published: 6 October 2019. doi.org/10.1002/est2.92
  • [5] Energy Information Administration (EIA), “Average Tested Heat Rates by Prime Mover and Energy Source, 2007 – 2017,” www.eia.gov/electricity/annual/html/epa_08_02.html, accessed January 1, 2020.
  • [6] Boretti, A., “Transient positive ignition internal combustion engines have now surpassed the 50% fuel conversion efficiency barrier,” International Journal of Hydrogen Energy, 44(14):7051-7052, 2019.
  • [7] Boretti, A., “Progress of Direct Injection and Jet Ignition in Throttle-Controlled Engines,” SAE Technical Paper 2019-26- 0045, 2019.
  • [8] Boretti, A., “Advances in Turbocharged Racing Engines,” (Warrendale, SAE International, 2019). ISBN 978-0-7680- 0014-6, 236 pages.
  • [9] Noble, J., “Mercedes F1 engine hits 'remarkable' efficiency target on dyno,” www.autosport.com/f1/news/131772/mercedes-engine-hitsremarkable- dyno-target, accessed January 1, 2020.
  • [10] MAN Diesel & Turbo, “LNG Carrier Propulsion by ME-GI Engines and/or Reliquefication,” www.idmeb.org/contents/Resource/LNG_Propulsion_02_29_38 .pdf, accessed January 1, 2020.
  • [11] MAN Diesel & Turbo, “LNG Carriers with ME-GI Engine and High-Pressure Gas Supply System,” marine.mandieselturbo.com/docs/librariesprovider6/technicalpapers/ lng-carriers-with-high-pressure-gas-supplysystem. pdf?sfvrsn=16, accessed January 1, 2020.
  • [12] Argonne National Laboratory (ANL), “2014 BMW i3 EV,” www.anl.gov/es/energy-systems-d3-2014-bmw-i3rex, accessed January 1, 2020.
  • [13] Boretti, A., “Analysis of the energy storage battery and fuel tank of a Commercial Electric Vehicle with Range Extender during Charge Sustaining Operation,” Energy Storage, e129, 2020. doi.org/10.1002/est2.129
  • [14] Boretti, A., “Electric vehicles with small batteries and high-efficiency on-board electricity production,” Energy Storage 1(4), e75, 2019.
  • [15] FuelEconomy.gov, “Compare Electric Cars Side-by- Side,” www.fueleconomy.gov/feg/evsbs.shtml, accessed January 1, 2020.
  • [16] FuelEconomy.gov, “Compare Plug-in Hybrids Side-by- Side,” www.fueleconomy.gov/feg/phevsbs.shtml, accessed January 1, 2020.
  • [17] Boretti, A., “Series BEV with a small battery pack and high-efficiency ICE onboard electricity production: B-class, high-roof hatchback and Le Mans Hypercar applications”, SAE P. 2020-01-2250, 2020.
  • [18] Boretti, A., “Battery electric vehicles with small battery pack and high efficiency onboard electricity production by a combustion engine”, FISITA2020 submitted paper under review.
  • [19] Ernst, J., “Volkswagen says last generation of combustion engines to be launched in 2026,” www.reuters.com/article/us-volkswagen-emissionscombustion/ volkswagen-says-last-generation-of-combustionengines- to-be-launched-in-2026-idUSKBN1O32O6, accessed January 1, 2020.
  • [20] Autocar, “BMW to cease production of the i3 Range Extender,” www.autocar.co.uk/car-news/new-cars/bmw-ceaseproduction- i3-range-extender, accessed January 1, 2020.
  • [19] Boretti, A. and Castelletto, S., Cost of wind energy generation should include energy storage allowance, Scientific Reports. Scientific Reports, 10:2978, 2020. doi.org/10.1038/s41598-020-59936-x
  • [20] Boretti, A., Energy storage needs for an Australian National Electricity Market grid without combustion fuels, Energy Storage. First Published: 6 October 2019. doi.org/10.1002/est2.92
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81461bab-5841-484f-aa73-d906e5284a20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.