PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer Simulations of Poisson’s Ratio of a Simple Periodic Model Structure of Cubic Symmetry : Comparison of Results Obtained by Different Methods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poisson’s ratio of a periodic model system, based on a cubic crystal with Lennard-Jones interactions, is studied in the direction of the 4-fold axis of the crystal. It is shown that results of atomistic Monte Carlo simulations agree well with results of continuous finite element simulations for systems as small as those built of supercells based on 6 × 6 × 6 unit cells.
Twórcy
  • Institute of Molecular Physics Polish Academy of Sciences ul. M. Smoluchowskiego 17, 60-179 Poznań, Poland
  • President Stanisław Wojciechowski University of Kalisz Polytechnic Faculty ul. Nowy Świat 4, 62-800 Kalisz, Poland
  • Poznan University of Life Sciences Faculty of Forestry and Wood Technology Department of Furniture Design ul. Wojska Polskiego 28, 60-637 Poznań, Poland
  • Poznan University of Technology Faculty of Mechanical Engineering Institute of Applied Mechanics ul. Jana Pawła II 24, 60-965 Poznań, Poland
  • Institute of Molecular Physics Polish Academy of Sciences ul. M. Smoluchowskiego 17, 60-179 Poznań, Poland
  • President Stanisław Wojciechowski University of Kalisz Polytechnic Faculty ul. Nowy Świat 4, 62-800 Kalisz, Poland
Bibliografia
  • [1] L.D. Landau, E.M. Lifshitz, Theory of Elasticity, Pergamon Press, London, UK (1986).
  • [2] T.C. Lim, Auxetic Materials and Structures, Springer, New York, NY, USA (2015).
  • [3] R.S. Lakes, Negative Poisson’s ratio materials: Auxetic solids, Annu. Rev. Mater. Res. 47, 63–81 (2017).
  • [4] R.S. Lakes, Foam Structures with a Negative Poisson’s Ratio, Science 235, 1038–1040 (1987).
  • [5] K.W. Wojciechowski, Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers, Mol. Phys. 61, 1247–1258 (1987).
  • [6] K.W. Wojciechowski, Two-dimensional isotropic model with a negative Poisson ratio, Phys. Lett. A 137, 60–64 (1989).
  • [7] K.W. Wojciechowski, A.C. Bran´ka, Negative Poisson’s ratio of a two-dimensional “isotropic” solid, Phys. Rev. A 40, 7222–7225 (1989).
  • [8] K.E. Evans, M.A. Nkansah, I.J. Hutchinson, S.C. Rogers, Molecular network design, Nature 353, 124 (1991).
  • [9] K.W. Wojciechowski, K.V. Tretiakov, M. Kowalik, Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions, Phys. Rev. E 67, 036121 (2003).
  • [10] J.W. Narojczyk, K.V. Tretiakov, J. Smardzewski, K.W. Wojciechowski, Hardening of fcc hard-sphere crystals by introducing nanochannels: Auxetic aspects, Phys. Rev. E 108, 045003 (2023).
  • [11] J.W. Narojczyk, Increase in Auxeticity Due to the Presence of a Disordered Crystalline Phase of Hard Dumbbells Within the Nanolayer–Nanochannel Inclusion Introduced to the f.c.c. Hard Sphere Crystal, Materials 16, 5558 (2024).
  • [12] J.W. Narojczyk, K.W. Wojciechowski, Elastic properties of hard sphere crystals with tripple (001) nanolayer inclusions within a unit supercell, CMST 30, 49 (2024).
  • [13] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52, 7182–7190 (1981).
  • [14] M. Parrinello, A. Rahman, Strain fluctuations and elastic constants, J. Chem. Phys. 76, 2662–2666 (1982).
  • [15] COMSOL Multiphysics® 5.5, Structural Mechanics Module, https://www.comsol.com/release/5.5.
  • [16] Abaqus (Dynamic, Explicit) v.6.13-1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81451d9f-b51c-416b-8f96-99b5417143cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.