DESCRIPTION OF THE SCATTERING DATA FOR STURM-LIOUVILLE OPERATORS ON THE HALF-LINE

Yaroslav Mykytyuk and Nataliia Sushchyk
Communicated by P.A. Cojuhari

Abstract

We describe the set of the scattering data for self-adjoint Sturm-Liouville operators on the half-line with potentials belonging to $L_{1}\left(\mathbb{R}_{+}, \rho(x) \mathrm{d} x\right)$, where $\rho: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a monotonically nondecreasing function from some family \mathscr{R}. In particular, \mathscr{R} includes the functions $\rho(x)=(1+x)^{\alpha}$ with $\alpha \geq 1$.

Keywords: inverse scattering, Schrödinger operator, Banach algebra.
Mathematics Subject Classification: 34L25, 34L40, 47L10, 81U40.

1. INTRODUCTION

In the Hilbert space $L_{2}\left(\mathbb{R}_{+}\right)$, we consider the Schrödinger operator generated by the differential expression

$$
\mathfrak{t}_{q}(f):=-f^{\prime \prime}+q f
$$

and the boundary condition

$$
f(0)=0
$$

with the potential q belonging to the class

$$
\mathcal{Q}_{\rho}:=\left\{q \in L_{1}\left(\mathbb{R}_{+}, \rho(x) \mathrm{d} x\right) \mid \operatorname{Im} q=0\right\}, \quad \rho \in \mathscr{R}_{0}
$$

Here \mathscr{R}_{0} is the class of all monotonically nondecreasing weight functions $\rho: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ such that $x \leq \rho(x)$ for all $x>0$. In particular, the class \mathscr{R}_{0} includes the weight function $\omega(x):=x$.

In the present paper, we study the problem of an efficient description of the scattering data for operators from the class $\mathcal{T}_{\rho}:=\left\{T_{q} \mid q \in \mathcal{Q}_{\rho}\right\}$ (for more details on the operator T_{q} see Appendix A). For the class \mathcal{T}_{ω}, such description was given by V.A. Marchenko [3]. As shown in [4], the scattering data for operators from the class
\mathcal{T}_{ω} can be efficiently described in terms of some functional Banach algebra introduced below. Our aim is to describe the class \mathscr{R} of weight functions $\rho \in \mathscr{R}_{0}$ for which a result analogous to that can be obtained.

To formulate the main result of the paper, let us recall some definitions. The scattering function $S=S_{q}$ of the operator T_{q} is defined as

$$
S(\lambda):=\frac{e(-\lambda)}{e(\lambda)}, \quad \lambda \in \mathbb{R}
$$

where $e(\lambda):=e(\lambda, 0)$ and $e(\lambda, \cdot)$ is the Jost solution of the equation

$$
\begin{equation*}
-y^{\prime \prime}+q y=\lambda^{2} y, \quad \lambda \in \overline{\mathbb{C}_{+}}:=\{\lambda \in \mathbb{C} \mid \operatorname{Im} \lambda \geq 0\}, \tag{1.1}
\end{equation*}
$$

i.e., a solution of (1.1) satisfying the asymptotics

$$
e(\lambda, x)=e^{\mathrm{i} \lambda x}(1+o(1)), \quad x \rightarrow+\infty .
$$

The spectrum of the operator T_{q} with $q \in \mathcal{Q}_{\rho}$ consists of the absolutely continuous part filling the whole positive half-axis and the point spectrum consisting of a finite number of negative simple eigenvalues (see, e.g., [3]). Let us enumerate these eigenvalues in the ascending order of their moduli and denote them by $-\kappa_{s}^{2}, s=1, \ldots, n$, where $\kappa_{s}=\kappa_{s}(q)>0$. To each eigenvalue $\lambda=-\kappa_{s}^{2}$, there correspond the eigenfunction $e\left(\mathrm{i} \kappa_{s}, \cdot\right)$ and the norming constant $m_{s}=m_{s}(q)$, which is defined as

$$
m_{s}=\left(\int_{0}^{\infty}\left|e\left(\mathrm{i} \kappa_{s}, x\right)\right|^{2} \mathrm{~d} x\right)^{-\frac{1}{2}}
$$

The scattering data of the operator T_{q} are defined as the triple $\mathfrak{s}_{q}:=\left(S_{q}, \vec{\kappa}_{q}, \vec{m}_{q}\right)$, where $\vec{\kappa}_{q}:=\left(\kappa_{s}(q)\right)_{s=1}^{n}, \vec{m}_{q}:=\left(m_{s}(q)\right)_{s=1}^{n}$. If $n=0$, then $\mathfrak{s}_{q}:=\left(S_{q}, 0,0\right)$. Let us put

$$
\Omega_{n}:=\left\{\left(\kappa_{1}, \ldots, \kappa_{n}\right) \in \mathbb{R}_{+}^{n} \mid 0<\kappa_{1}<\cdots<\kappa_{n}\right\}, \quad n \in \mathbb{N} .
$$

For an arbitrary open set $\mathcal{O} \subset \mathbb{R}$, we denote by $\operatorname{AC}(\mathcal{O})$ the set of all functions $f: \mathcal{O} \rightarrow \mathbb{C}$ that are absolutely continuous on each compact interval $\Delta \subset \mathcal{O}$. For an arbitrary $\rho \in \mathscr{R}_{0}$, let us denote by X_{ρ} the Banach space consisting of functions $u \in \mathrm{AC}(\mathbb{R} \backslash\{0\}) \cap L_{1}(\mathbb{R})$ with the norm

$$
\|u\|_{X_{\rho}}:=\int_{\mathbb{R}} \rho(|x|)\left|u^{\prime}(x)\right| \mathrm{d} x<\infty .
$$

Similarly, we denote by X_{ρ}^{+}and X_{ρ}^{-}the Banach spaces consisting of $u_{+} \in$ $\mathrm{AC}\left(\mathbb{R}_{+}\right) \cap L_{1}\left(\mathbb{R}_{+}\right)$and $u_{-} \in \mathrm{AC}\left(\mathbb{R}_{-}\right) \cap L_{1}\left(\mathbb{R}_{-}\right)$, respectively, with the norms

$$
\left\|u_{ \pm}\right\|_{X_{\rho}^{ \pm}}:=\int_{\mathbb{R}_{ \pm}} \rho(|x|)\left|u_{ \pm}^{\prime}(x)\right| \mathrm{d} x<\infty
$$

Let us agree to identify the spaces $X_{\rho}^{ \pm}$with the subspaces $\left\{f \in X_{\rho}|f|_{\mathbb{R}_{\mp}}=0\right\}$ in the space X_{ρ}. Then $X_{\rho}=X_{\rho}^{+} \dot{+} X_{\rho}^{-}$.

Recall that $\omega(x)=x$ and $\omega \leq \rho$. Therefore, $X_{\rho} \subset X_{\omega}$ and $X_{\rho}^{ \pm} \subset X_{\omega}^{ \pm}$. As will be shown in Section 2 of this paper, the space X_{ρ} is continuously embedded in $L_{1}(\mathbb{R})$.

Consider the Banach space

$$
\mathbf{B}_{\rho}:=\left\{\alpha \mathbf{1}+\widehat{\varphi} \mid \alpha \in \mathbb{C}, \varphi \in X_{\rho}\right\}
$$

with the norm

$$
\begin{equation*}
\|\alpha \mathbf{1}+\widehat{\varphi}\|_{\mathbf{B}_{\rho}}:=|\alpha|+\|\varphi\|_{X_{\rho}} . \tag{1.2}
\end{equation*}
$$

Here $\mathbf{1}(x) \equiv 1$ and $\widehat{\varphi}$ is the Fourier transform of a function φ.
Definition 1.1. A weight function $\rho \in \mathscr{R}_{0}$ is called regular if

$$
c(\rho):=\sup _{x>0} \rho(2 x) / \rho(x)<\infty
$$

Denote by \mathscr{R} the set of all regular functions $\rho \in \mathscr{R}_{0}$.
Theorem 1.2. Let $\rho \in \mathscr{R}$. Then there is a norm on \mathbf{B}_{ρ} (see the formula (3.1) below) equivalent to the norm (1.2) which turns \mathbf{B}_{ρ} into a unital commutative Banach algebra in which the multiplication is the standard pointwise multiplication.

The main result of this paper is:
Theorem 1.3. Let $\rho \in \mathscr{R}$. Then the set $\left\{S_{q} \mid q \in \mathcal{Q}_{\rho}\right\}$ coincides with the set

$$
\mathcal{S}_{\rho}:=\left\{S \in \mathbf{B}_{\rho} \mid S(\infty)=1 \text { and } \forall \lambda \in \mathbb{R} S(\lambda) S(-\lambda)=|S(\lambda)|=1\right\} .
$$

The following result follows from Theorem 1.3.
Corollary 1.4. Let $\rho \in \mathscr{R}$ and $n \in \mathbb{N}($ resp. $n=0)$. A triple $(S, \vec{\kappa}, \vec{m})($ resp. $(S, 0,0))$, where $S: \mathbb{R} \rightarrow \mathbb{C}, \vec{\kappa} \in \Omega_{n}, \vec{m} \in \mathbb{R}_{+}^{n}$, is the scattering data of some $T \in \mathcal{T}_{\rho}$ if and only if $S \in \mathcal{S}_{\rho}$ and $[-\operatorname{ind} S / 2]=n$, where ind $S:=((\ln S)(\infty)-(\ln S)(-\infty)) / 2 \pi \mathrm{i}$ and $[x]$ is the integer part of x.

This paper is organized as follows. In Section 2, we study properties of the spaces X_{ρ} and their subspaces $X_{\rho}^{ \pm}$. In Section 3, we consider properties of the algebra \mathbf{B}_{ρ} and prove Theorem 1.2. In Section 4, we prove Theorem 1.3. Finally, in an Appendix, we give the explicit definition of the operator T_{q}.

2. PROPERTIES OF THE SPACES X_{ρ}

Denote by $\|\cdot\|_{p}$ the norm in the space $L_{p}(\mathbb{R}), p \in[1, \infty]$, and denote by $f * g$ the convolution of functions $f, g \in L_{1}(\mathbb{R})$, i.e.,

$$
(f * g)(x):=\int_{\mathbb{R}} f(x-t) g(t) \mathrm{d} t, \quad x \in \mathbb{R}
$$

It is well known that the convolution is a commutative operation in $L_{1}(\mathbb{R})$ and that

$$
\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}, \quad f, g \in L_{1}(\mathbb{R})
$$

and

$$
\widehat{f * g}=\widehat{f} \widehat{g},
$$

where $\hat{\varphi}$ is the Fourier transform of a function φ, i.e.,

$$
\widehat{\varphi}(\lambda):=\int_{\mathbb{R}} e^{\mathrm{i} \lambda t} \varphi(t) \mathrm{d} t, \quad \lambda \in \mathbb{R} .
$$

Let us denote by P_{+}and P_{-}the projections in the space $L_{1}(\mathbb{R})$ acting by the formulas

$$
\left(P_{+} f\right)(x):=\chi_{+}(x) f(x), \quad\left(P_{-} f\right)(x):=\chi_{-}(x) f(x), \quad x \in \mathbb{R},
$$

where $\chi_{+}\left(\right.$resp. $\left.\chi_{-}\right)$is the indicator function of the half-line \mathbb{R}_{+}(resp. of \mathbb{R}_{-}).
Remark 2.1. If $f, g \in L_{1}(\mathbb{R})$ and $P_{-} f=P_{-} g=0$, then $P_{-}(f * g)=0$ and

$$
(f * g)(x)=\int_{0}^{x} f(x-t) g(t) \mathrm{d} t=\int_{0}^{x / 2} f(x-t) g(t) \mathrm{d} t+\int_{0}^{x / 2} g(x-t) f(t) \mathrm{d} t, \quad x>0 .
$$

Clearly, P_{+}and P_{-}are the projections in every space $X_{\rho}\left(\rho \in \mathscr{R}_{0}\right)$. Moreover, $P_{ \pm} X_{\rho}=X_{\rho}^{ \pm}$and

$$
\begin{equation*}
\|f\|_{X_{\rho}}=\left\|P_{+} f\right\|_{X_{\rho}}+\left\|P_{-} f\right\|_{X_{\rho}}, \quad f \in X_{\rho} . \tag{2.1}
\end{equation*}
$$

Note that the reflection operator Γ, given by the formula

$$
(\Gamma f)(x)=f(-x), \quad x \in \mathbb{R}
$$

is an isometry of X_{ρ} onto itself and maps the space $X_{\rho}^{+}\left(X_{\rho}^{-}\right)$on $X_{\rho}^{-}\left(X_{\rho}^{+}\right)$. Moreover,

$$
\begin{equation*}
(\Gamma f) *(\Gamma g)=\Gamma(f * g), \quad f, g \in L_{1}(\mathbb{R}) \tag{2.2}
\end{equation*}
$$

Next, denote by Λ_{ρ} the operator acting on the space $L_{1, \text { loc }}(\mathbb{R})$ by the formula

$$
\left(\Lambda_{\rho} f\right)(x):=\rho(|x|) f(x), \quad x \in \mathbb{R}
$$

Lemma 2.2. Let $\rho \in \mathscr{R}_{0}$. Then
(i) the space X_{ρ} is continuously embedded in $L_{1}(\mathbb{R})$ and

$$
\begin{equation*}
\|u\|_{1} \leq\|u\|_{X_{\rho}}, \quad u \in X_{\rho} \tag{2.3}
\end{equation*}
$$

(ii) the operator Λ_{ρ} maps continuously the space X_{ρ} into $L_{\infty}(\mathbb{R})$ and

$$
\begin{equation*}
\left\|\Lambda_{\rho} u\right\|_{\infty} \leq\|u\|_{X_{\rho}}, \quad u \in X_{\rho} . \tag{2.4}
\end{equation*}
$$

Proof. Clearly, it suffices to prove the estimates (2.3), (2.4), and only for $u \in X_{\rho}^{+}$. Fix an arbitrary $u \in X_{\rho}^{+}$. Since $u(x)$ vanishes at $+\infty$ and thus

$$
|u(x)| \leq \int_{x}^{\infty}\left|u^{\prime}(t)\right| \mathrm{d} t, \quad x \in \mathbb{R}_{+}
$$

we have

$$
\begin{equation*}
\rho(x)|u(x)| \leq \rho(x) \int_{x}^{\infty}\left|u^{\prime}(t)\right| \mathrm{d} t \leq \int_{x}^{\infty} \rho(t)\left|u^{\prime}(t)\right| \mathrm{d} t, \quad x \in \mathbb{R}_{+} \tag{2.5}
\end{equation*}
$$

and

$$
\int_{0}^{\infty}|u(x)| \mathrm{d} x \leq \int_{0}^{\infty} \int_{x}^{\infty}\left|u^{\prime}(t)\right| \mathrm{d} t \mathrm{~d} x=\int_{0}^{\infty} t\left|u^{\prime}(t)\right| \mathrm{d} t \leq \int_{0}^{\infty} \rho(t)\left|u^{\prime}(t)\right| \mathrm{d} t
$$

Using these estimates, we obtain (2.3) and (2.4).
Consider the spaces

$$
Y^{ \pm}:=\left\{f \in X_{\rho}^{ \pm} \mid f \text { has compact support and } f \in C^{1}\left(\mathbb{R}_{ \pm} \cup\{0\}\right)\right\}
$$

Lemma 2.3. Let $\rho \in \mathscr{R}_{0}$. Then the set $Y^{+}\left(\right.$resp. $\left.Y^{-}\right)$is everywhere dense in the space X_{ρ}^{+}(resp. in X_{ρ}^{-}).
Proof. Obviously, it suffices to prove the statement for the set Y^{+}only. Take $f \in X_{\rho}^{+}$ and consider the sequence $f_{n}:=\theta_{n} f(n \in \mathbb{N})$, where the functions $\theta_{n}: \mathbb{R} \rightarrow[0,1]$ are defined as

$$
\theta_{n}(x):= \begin{cases}1, & \text { if } 0 \leq x \leq n \\ 2-x / n, & \text { if } n<x \leq 2 n \\ 0, & \text { if } x<0 \text { or } x>2 n\end{cases}
$$

It is easily seen that each function f_{n} belongs to X_{ρ}^{+}, has compact support and

$$
\left\|f-f_{n}\right\|_{X_{\rho}}=\int_{0}^{\infty} \rho(t)\left|f^{\prime}(t)-f_{n}^{\prime}(t)\right| \mathrm{d} t \leq \int_{n}^{\infty} \rho(t)\left|f^{\prime}(t)\right| \mathrm{d} t+\frac{1}{n} \int_{n}^{2 n} \rho(t)|f(t)| \mathrm{d} t .
$$

It follows from (2.5) that

$$
\rho(x)|f(x)| \leq \int_{n}^{\infty} \rho(t)\left|f^{\prime}(t)\right| \mathrm{d} t, \quad x \geq n .
$$

Thus

$$
\left\|f-f_{n}\right\|_{X_{\rho}} \leq 2 \int_{n}^{\infty} \rho(t)\left|f^{\prime}(t)\right| \mathrm{d} t
$$

and hence $f_{n} \xrightarrow{X_{\rho}} f$ as $n \rightarrow \infty$.

It remains to prove that every function $u \in X_{\rho}^{+}$of compact support can be approximated by elements from Y^{+}in the norm of X_{ρ}. Let $u \in X_{\rho}^{+}$be a function of compact support. Fix an arbitrary non-negative function $\phi \in C^{\infty}(\mathbb{R})$ for which

$$
\operatorname{supp} \phi \subset[0,1], \quad \int_{\mathbb{R}} \phi(t) \mathrm{d} t=1
$$

Obviously, for an arbitrary $\varepsilon>0$, the function

$$
u_{\varepsilon}(x):= \begin{cases}\frac{1}{\varepsilon} \int_{\mathbb{R}} u(t) \phi\left(\frac{t-x}{\varepsilon}\right) \mathrm{d} t, & \text { if } x \geq 0 \\ 0, & \text { if } x<0\end{cases}
$$

belongs to Y^{+}. Note that for $x>0$,

$$
u(x)-u_{\varepsilon}(x)=\int_{0}^{1}(u(x)-u(x+\varepsilon y)) \phi(y) \mathrm{d} y
$$

and

$$
\rho(x) \frac{\mathrm{d}}{\mathrm{~d} x}(u(x)-u(x+\varepsilon y))=v(x)-v(x+\varepsilon y)+v(x+\varepsilon y) m_{\varepsilon}(x, y)
$$

where $v(x):=\rho(x) u^{\prime}(x)$ and $m_{\varepsilon}(x, y):=1-\frac{\rho(x)}{\rho(x+\varepsilon y)}$. Thus
$\left\|u-u_{\varepsilon}\right\|_{X_{\rho}} \leq \int_{0}^{\infty} \int_{0}^{1}|v(x)-v(x+\varepsilon y)| \phi(y) \mathrm{d} y \mathrm{~d} x+\int_{0}^{\infty} \int_{0}^{1}|v(x+\varepsilon y)| m_{\varepsilon}(x, y) \phi(y) \mathrm{d} y \mathrm{~d} x$.
Since $v \in L_{1}(\mathbb{R}), 0 \leq m_{\varepsilon} \leq 1$, and $m_{\varepsilon}(x, y) \rightarrow 0$ as $\varepsilon \rightarrow 0$ almost everywhere on $\mathbb{R}_{+} \times[0,1]$, we conclude that $u_{\varepsilon} \xrightarrow{X_{\rho}} u$ as $\varepsilon \rightarrow+0$.

Proposition 2.4. Let $\rho \in \mathscr{R}$ and $c=c(\rho)$. Then for an arbitrary $f, g \in X_{\rho}$, the convolution $f * g$ belongs to X_{ρ} and

$$
\begin{equation*}
\|f * g\|_{X_{\rho}} \leq 4 c\|f\|_{X_{\rho}}\|g\|_{X_{\rho}} . \tag{2.6}
\end{equation*}
$$

Proof. Note that in view of Definition 1.1,

$$
\begin{equation*}
\rho(2 x) \leq c \rho(x), \quad x>0 \tag{2.7}
\end{equation*}
$$

1) Let $f, g \in Y^{+}$. Then (see Remark 2.1) $(f * g)(x)=0$ for $x<0$ and

$$
(f * g)^{\prime}(x)=f(x / 2) g(x / 2)+\int_{0}^{x / 2} f^{\prime}(x-t) g(t) \mathrm{d} t+\int_{0}^{x / 2} g^{\prime}(x-t) f(t) \mathrm{d} t, \quad x>0 .
$$

Using this fact and the estimate (2.7), we obtain that for $x>0$

$$
\begin{aligned}
\rho(x)\left|(f * g)^{\prime}(x)\right| \leq & c \rho(x / 2)|f(x / 2)||g(x / 2)| \\
& +c \int_{0}^{x / 2} \rho(x-t)\left|f^{\prime}(x-t)\right||g(t)| \mathrm{d} t \\
& +c \int_{0}^{x / 2} \rho(x-t)\left|g^{\prime}(x-t)\right||f(t)| \mathrm{d} t .
\end{aligned}
$$

Therefore, taking into account (2.3) and (2.4), we get that for all $f, g \in Y^{+}$,

$$
\begin{equation*}
\|f * g\|_{X_{\rho}} \leq 2 c\left\|\Lambda_{\rho} f\right\|_{\infty}\|g\|_{1}+c\|f\|_{X_{\rho}}\|g\|_{1}+c\|g\|_{X_{\rho}}\|f\|_{1} \leq 4 c\|f\|_{X_{\rho}}\|g\|_{X_{\rho}} . \tag{2.8}
\end{equation*}
$$

2) Since the reflection operator Γ maps Y^{+}onto Y^{-}and is an isometry of the spaces X_{ρ}, taking into account (2.2) and (2.8), we obtain that

$$
\begin{equation*}
\|f * g\|_{X_{\rho}} \leq 4 c\|f\|_{X_{\rho}}\|g\|_{X_{\rho}}, \quad f, g \in Y^{-} \tag{2.9}
\end{equation*}
$$

3) Let $f \in Y^{+}$and $g \in Y^{-}$. Then

$$
\rho(x)\left|(f * g)^{\prime}(x)\right| \leq \rho(x) \int_{-\infty}^{0}\left|f^{\prime}(x-t)\right||g(t)| \mathrm{d} t \leq \int_{-\infty}^{0} \rho(x-t)\left|f^{\prime}(x-t)\right||g(t)| \mathrm{d} t
$$

for $x>0$ and

$$
\rho(|x|)\left|(f * g)^{\prime}(x)\right| \leq \rho(|x|) \int_{0}^{\infty}\left|g^{\prime}(x-t)\right||f(t)| \mathrm{d} t \leq \int_{0}^{\infty} \rho(|x-t|)\left|g^{\prime}(x-t)\right||f(t)| \mathrm{d} t
$$

for $x<0$. Since $c \geq 1$, using the estimate (2.3), we get

$$
\begin{equation*}
\|f * g\|_{X_{\rho}} \leq\|f\|_{X_{\rho}}\|g\|_{1}+\|g\|_{X_{\rho}}\|f\|_{1} \leq 2 c\|f\|_{X_{\rho}}\|g\|_{X_{\rho}}, \quad f \in Y^{+}, g \in Y^{-} \tag{2.10}
\end{equation*}
$$

4) Let $f, g \in Y^{+} \oplus Y^{-}$and $f_{ \pm}:=P_{ \pm} f, g_{ \pm}:=P_{ \pm} g$. Then

$$
f * g=f_{+} * g_{+}+f_{-} * g_{-}+f_{+} * g_{-}+f_{-} * g_{+} .
$$

Taking into account (2.9), (2.10) and (2.1), we obtain

$$
\begin{equation*}
\|f * g\|_{X_{\rho}} \leq 4 c\|f\|_{X_{\rho}}\|g\|_{X_{\rho}}, \quad f, g \in Y^{+} \oplus Y^{-} \tag{2.11}
\end{equation*}
$$

Let $f, g \in X_{\rho}$ and $u=f * g$. In view of Lemma 2.3, there exist sequences $\left(f_{n}\right)_{n \in \mathbb{N}}$ and $\left(g_{n}\right)_{n \in \mathbb{N}}$ in $Y^{+} \oplus Y^{-}$converging in X_{ρ} to f and g, respectively. It follows from (2.11) that the sequence $\left(f_{n} * g_{n}\right)_{n \in \mathbb{N}}$ is Cauchy in X_{ρ} and

$$
\left\|f_{n} * g_{n}\right\|_{X_{\rho}} \leq 4 c\left\|f_{n}\right\|_{X_{\rho}}\left\|g_{n}\right\|_{X_{\rho}}, \quad n \in \mathbb{N}
$$

Since the space X_{ρ} is complete and continuously embedded in $L_{1}(\mathbb{R})$, we conclude that the sequence $\left(f_{n} * g_{n}\right)_{n \in \mathbb{N}}$ converges in X_{ρ} to some $u \in X_{\rho}$. Thus, letting $n \rightarrow \infty$, we get that $\|f * g\|_{X_{\rho}} \leq 4 c\|f\|_{X_{\rho}}\|g\|_{X_{\rho}}$, and the proof is complete.

3. PROPERTIES OF THE SPACES B ${ }_{\rho}$

Let us consider the classical Wiener algebra (see, e.g., $[7,8]$), i.e., the commutative Banach algebra

$$
\mathbf{A}:=\left\{\alpha \mathbf{1}+\widehat{\varphi} \mid \alpha \in \mathbb{C}, \quad \varphi \in L_{1}(\mathbb{R})\right\}
$$

with the norm

$$
\|\alpha \mathbf{1}+\widehat{\varphi}\|_{\mathbf{A}}:=|\alpha|+\|\varphi\|_{1} .
$$

The multiplication in \mathbf{A} is the usual pointwise multiplication and

$$
\|f g\|_{\mathbf{A}} \leq\|f\|_{\mathbf{A}}\|g\|_{\mathbf{A}}, \quad f, g \in \mathbf{A} .
$$

It is known that every function $f \in \mathbf{A}$ is continuous on $\mathbb{R} \cup\{\infty\}$.
In the algebra \mathbf{A}, we consider the closed subalgebras

$$
\begin{aligned}
& \mathbf{A}^{+}:=\left\{f=\alpha \mathbf{1}+\widehat{h}\left|\alpha \in \mathbb{C}, h \in L_{1}(\mathbb{R}), h\right|_{\mathbb{R}_{-}}=0\right\}, \\
& \mathbf{A}_{0}:=\left\{f=\widehat{h} \mid h \in L_{1}(\mathbb{R})\right\}, \quad \mathbf{A}_{0}^{+}:=\mathbf{A}_{0} \cap \mathbf{A}^{+} .
\end{aligned}
$$

Remark 3.1. Each function $\varphi \in \mathbf{A}^{+}$is the restriction onto \mathbb{R} of a function Φ which is analytic in the upper half-plane \mathbb{C}_{+}and continuous in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$. We will identify the functions φ and Φ.

The following statement follows from the well known results of Wiener (see, e.g., [2], Chapter VIII, 6) and is an analogue of classical Wiener's lemma.

Lemma 3.2 (Wiener). An element $f \in \mathbf{A}\left(f \in \mathbf{A}^{+}\right)$is invertible in the algebra \mathbf{A} (resp., in \mathbf{A}^{+}) if and only if f does not vanish on $\mathbb{R} \cup\{\infty\}$ (resp., in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$).
Remark 3.3. Since $\widehat{X_{\rho}}$ and X_{ρ} are isometric, then $\widehat{X_{\rho}}$ and \mathbf{B}_{ρ} are Banach spaces. It follows from (2.3) that the space $\widehat{X_{\rho}}$ is continuously embedded in \mathbf{A}_{0}. Thus the algebra \mathbf{B}_{ρ} is continuously embedded in \mathbf{A}.
Proof of Theorem 1.2. Let $\rho \in \mathscr{R}$ and $f, g \in X_{\rho}$. In view of Proposition 2.4, the convolution $f * g$ belongs to X_{ρ}. Since $\widehat{f * g}=\widehat{f} \widehat{g}$, the product $\widehat{f} \widehat{g}$ belongs to $\widehat{X_{\rho}}$. Thus \widehat{X}_{ρ} is a complex algebra. By the definition of \mathbf{B}_{ρ},

$$
\mathbf{B}_{\rho}=\widehat{X}_{\rho} \dot{+}\{\alpha \mathbf{1} \mid \alpha \in \mathbb{C}\}
$$

Hence \mathbf{B}_{ρ} is a complex algebra with unit 1.
Let c be the constant from Definition 1.1. Obviously, the formula

$$
\begin{equation*}
\|\alpha \mathbf{1}+\widehat{\varphi}\|_{\rho, c}:=|\alpha|+4 c\|\varphi\|_{X_{\rho}}, \quad \alpha \in \mathbb{C}, \varphi \in X_{\rho}, \tag{3.1}
\end{equation*}
$$

defines a norm on \mathbf{B}_{ρ} which is equivalent to the norm (1.2). We now show that \mathbf{B}_{ρ} with the norm $\|\cdot\|_{\rho, c}$ is a Banach algebra with unit. Clearly, it suffices to prove that the norm $\|\cdot\|_{\rho, c}$ satisfies the multiplicative inequality. Let $f=\alpha \mathbf{1}+\widehat{\varphi}$ and $g=\beta \mathbf{1}+\widehat{\psi}$, where $\alpha, \beta \in \mathbb{C}$ and $\varphi, \psi \in X_{\rho}$. Then

$$
\|f g\|_{\rho, c} \leq|\alpha||\beta|+|\beta|\|\widehat{\psi}\|_{\rho, c}+|\alpha|\|\widehat{\psi}\|_{\rho, c}+\|\widehat{\varphi} \widehat{\psi}\|_{\rho, c} .
$$

It follows from the inequality (2.6) that

$$
\|\widehat{\varphi} \widehat{\psi}\|_{\rho, c}=4 c\|\varphi * \psi\|_{X_{\rho}} \leq 16 c^{2}\|\varphi\|_{X_{\rho}}\|\psi\|_{X_{\rho}} \leq\|\widehat{\varphi}\|_{\rho, c}\|\widehat{\psi}\|_{\rho, c}
$$

Thus

$$
\|f g\|_{\rho, c} \leq\left(|\alpha|+\|\widehat{\varphi}\|_{\rho, c}\right)\left(|\beta|+\|\widehat{\psi}\|_{\rho, c}\right)=\|f\|_{\rho, c}\|g\|_{\rho, c}
$$

as claimed.
In the algebra \mathbf{B}_{ρ}, we consider the closed subalgebras $\mathbf{B}_{\rho}^{+}:=\mathbf{B}_{\rho} \cap \mathbf{A}^{+}$.

Lemma 3.4.

(i) Let $\rho \in \mathscr{R}$ and b be a rational function that has only simple zeros and does not vanish on $\mathbb{R} \cup\{\infty\}$. Then $1 / b \in \mathbf{B}_{\rho}$.
(ii) Let $\rho \in \mathscr{R}$ and $u \in Y^{+}$and, moreover, assume that the function $g=\mathbf{1}+\widehat{u}$ does not vanish in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$. Then $1 / g \in \mathbf{B}_{\rho}^{+}$.
Proof. Let the conditions of (i) be satisfied. Then

$$
\frac{1}{b(\lambda)}=c_{0}+\sum_{j=1}^{n} \frac{c_{j}}{\lambda+\alpha_{j}}, \quad \lambda \in \mathbb{R}
$$

where $\left\{c_{j}\right\}_{j=0}^{n} \subset \mathbb{C}$ and $\left\{\alpha_{j}\right\}_{j=1}^{n} \subset \mathbb{C} \backslash \mathbb{R}$. Thus, it suffices to show that the functions $f_{\alpha}(\lambda)=(\lambda+\alpha)^{-1}$ with $\alpha \in \mathbb{C}_{+}$belong to \mathbf{B}_{ρ}^{+}. Note that f_{α} is the Fourier transform of the function $u_{\alpha}(x):=-i e^{i \alpha x} \chi_{+}(x)$. Since $\lim _{x \rightarrow+\infty} \rho(x) e^{-\gamma x}=0$ for $\gamma>0$, then $f_{\alpha} \in \widehat{X_{\rho}^{+}}$.

Let the conditions of (ii) be satisfied. We consider the function $v(x):=\mathrm{i} u(x)+$ $\mathrm{i} u^{\prime}(x)(x \neq 0)$. This function belongs to $L_{2}(\mathbb{R})$, has compact support and

$$
\widehat{v}(\lambda)=\mathrm{i} \widehat{u}(\lambda)+\mathrm{i} \int_{\mathbb{R}} e^{\mathrm{i} \lambda x} u^{\prime}(x) \mathrm{d} x=(\lambda+\mathrm{i}) \widehat{u}(\lambda)-\mathrm{i}(u(+0)-u(-0)) .
$$

Thus

$$
\widehat{u}(\lambda)=\frac{\mathrm{i}(u(+0)-u(-0))}{\lambda+\mathrm{i}}+\frac{\widehat{v}(\lambda)}{\lambda+\mathrm{i}}, \quad \lambda \in \mathbb{C} .
$$

Using this fact, we conclude that

$$
\widehat{u}(\lambda)=o\left(\lambda^{-1}\right), \quad \lambda \rightarrow \infty,
$$

uniformly in each strip $\{z \in \mathbb{C}||\operatorname{Im} z|<\gamma\}(\gamma>0)$. Thus

$$
\frac{1}{g(\lambda)}=1-\widehat{u}(\lambda)+\frac{\widehat{u}(\lambda)^{2}}{1+\widehat{u}(\lambda)}=1-\widehat{u}(\lambda)+h(\lambda)
$$

where the function h is analytic in some half-plane $\{z \in \mathbb{C} \mid \operatorname{Im} z>-\delta\}(\delta>0)$ and

$$
\begin{equation*}
\sup _{|y|<\delta} \int_{\mathbb{R}}|(x+\mathrm{i} y) h(x+\mathrm{i} y)|^{2} \mathrm{~d} x<\infty \tag{3.2}
\end{equation*}
$$

Therefore, it suffices to show that $h \in \widehat{X_{\rho}^{+}}$. It follows from (3.2) that $h=\widehat{w}$, where w belongs to the Sobolev space $W_{2}^{1}(\mathbb{R})$. From known properties of the Fourier transform (see, e.g., [6, Chapter 5]), we obtain that

$$
2 \pi \int_{\mathbb{R}} e^{-2 y \xi}\left|w^{\prime}(\xi)\right|^{2} \mathrm{~d} \xi=\int_{\mathbb{R}}|(x+\mathrm{i} y) h(x+\mathrm{i} y)|^{2} \mathrm{~d} x, \quad y \in(-\delta, \delta) .
$$

Using this fact and (3.2), we get that

$$
J(y):=\int_{\mathbb{R}} e^{2 y|\xi|}\left|w^{\prime}(\xi)\right|^{2} \mathrm{~d} \xi<\infty, \quad y \in(0, \delta)
$$

Using the Cauchy-Schwarz inequality, we derive that

$$
\left(\int_{\mathbb{R}} e^{y|\xi|}\left|w^{\prime}(\xi)\right| \mathrm{d} \xi\right)^{2} \leq J(u) \int_{\mathbb{R}} e^{2(y-u)|\xi|} \mathrm{d} \xi<\infty, \quad 0<y<u<\delta .
$$

Since $\lim _{x \rightarrow+\infty} \rho(x) e^{-y x}=0$ for $y>0$, we conclude that $w \in X_{\rho}^{+}$, and hence $h \in \widehat{X_{\rho}^{+}}$. The proof is complete.

Lemma 3.5. Let $\rho \in \mathscr{R}, c=c(\rho), u \in Y^{+}$and $\|u\|_{1} \leq 1 / 4 c$. Then the function $g=\mathbf{1}+\widehat{u}$ is invertible in the algebra \mathbf{B}_{ρ}^{+}and, moreover, (see (3.1))

$$
\|1 / g\|_{\rho, c} \leq 4\|g\|_{\rho, c} .
$$

Proof. Since $c \geq 1$, we conclude that the element $g=\mathbf{1}+\widehat{u}$ is invertible in the algebra \mathbf{A}^{+}and, moreover, $1 / g=\mathbf{1}+\widehat{v}$, where $v \in L_{1}(\mathbb{R})$ and

$$
\begin{equation*}
\|v\|_{1}=\|1 / g-\mathbf{1}\|_{\mathbf{A}} \leq \sum_{n=1}^{\infty}\|\widehat{u}\|_{\mathbf{A}}^{n}=\frac{\|\widehat{u}\|_{\mathbf{A}}}{1-\|\widehat{u}\|_{\mathbf{A}}}=\frac{\|u\|_{1}}{1-\|u\|_{1}} \leq \frac{1}{2 c} . \tag{3.3}
\end{equation*}
$$

In view of the Wiener Lemma and Lemma 3.4, we obtain that $v \in X_{\rho}^{+}$. Since $(\mathbf{1}+\widehat{u})(\mathbf{1}+\widehat{v})=\mathbf{1}$, we have that $u+v+u * v=0$. Taking into account that $u \in Y^{+}$ and $v \in X_{\rho}^{+}$, we get the equality

$$
u(x)+v(x)+\int_{0}^{x} u(x-t) v(t) \mathrm{d} t=0, \quad x>0
$$

from which we can easily see that $v \in C^{1}[0, \infty)$. We represent the convolution $u * v$ in the form $u * v=w_{1}+w_{2}$, where (see Remark 2.1)

$$
w_{1}(x):=\int_{0}^{x / 2} u(x-t) v(t) \mathrm{d} t, \quad w_{2}(x):=\int_{0}^{x / 2} v(x-t) u(t) \mathrm{d} t, \quad x \geq 0
$$

and $w_{1}(x)=w_{2}(x)=0$ for $x<0$. It is clear that $w_{1}, w_{2} \in C^{1}[0, \infty)$ and

$$
\begin{aligned}
& w_{1}^{\prime}(x)=\frac{1}{2} u(x / 2) v(x / 2)+\int_{0}^{x / 2} u^{\prime}(x-t) v(t) \mathrm{d} t, \quad x>0, \\
& w_{2}^{\prime}(x)=\frac{1}{2} u(x / 2) v(x / 2)+\int_{0}^{x / 2} v^{\prime}(x-t) u(t) \mathrm{d} t, \quad x>0 .
\end{aligned}
$$

Let us estimate the norm $\left\|w_{1}\right\|_{X_{\rho}}$. Taking into account the inequality (2.7), we have that for an arbitrary $x>0$,

$$
\rho(x)\left|w_{1}^{\prime}(x)\right| \leq \frac{c}{2}|\rho(x / 2) u(x / 2)||v(x / 2)|+c \int_{0}^{x / 2} \rho(x-t)\left|u^{\prime}(x-t) \| v(t)\right| \mathrm{d} t .
$$

Thus, using (2.4) and (3.3), we get

$$
\begin{equation*}
\left\|w_{1}\right\|_{X_{\rho}} \leq c\|u\|_{X_{\rho}}\|v\|_{1}+c\|u\|_{X_{\rho}}\|v\|_{1} \leq 2 c\|u\|_{X_{\rho}}\|v\|_{1} \leq\|u\|_{X_{\rho}} . \tag{3.4}
\end{equation*}
$$

Similarly, we obtain that

$$
\begin{equation*}
\left\|w_{2}\right\|_{X_{\rho}} \leq 2 c\|v\|_{X_{\rho}}\|u\|_{1} \leq \frac{1}{2}\|v\|_{X_{\rho}} . \tag{3.5}
\end{equation*}
$$

It is easily seen that $\|v\|_{X_{\rho}} \leq\|u\|_{X_{\rho}}+\left\|w_{1}\right\|_{X_{\rho}}+\left\|w_{2}\right\|_{X_{\rho}}$. Taking into account (3.4) and (3.5), we obtain that $\|v\|_{X_{\rho}} \leq 4\|u\|_{X_{\rho}}$, so that

$$
\|1 / g\|_{\rho, c}=1+4 c\|v\|_{X_{\rho}} \leq 4\left(1+4 c\|u\|_{X_{\rho}}\right)=4\|g\|_{\rho, c}
$$

as claimed.
The main result of this section is following analogue of the Wiener Lemma.
Theorem 3.6. Let $\rho \in \mathscr{R}$. Then $g \in \mathbf{B}_{\rho}^{+}$is invertible in the Banach algebra \mathbf{B}_{ρ}^{+} if and only if g does not vanish in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$.
Proof. Let g be invertible in the algebra \mathbf{B}_{ρ}^{+}. Since $\mathbf{B}_{\rho}^{+} \subset \mathbf{A}^{+}$, the element g is invertible in the algebra \mathbf{A}^{+}. Thus, in view of Wiener Lemma, g does not vanish in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$.

Conversely, let $g \in \mathbf{B}_{\rho}^{+}$not vanish in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$. From Wiener Lemma, we can conclude that $1 / g \in \mathbf{A}^{+}$. Let us show that $1 / g \in \mathbf{B}_{\rho}^{+}$. Without loss of generality, we can assume that $g=\mathbf{1}+\widehat{u}$, where $u \in X_{\rho}^{+}$.

First, we consider the case $\|u\|_{1} \leq 1 / 4 c$. By Lemma 2.3, there exists a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in Y^{+}converging to u in X_{ρ}^{+}. Since the space X_{ρ} is continuously embedded in $L_{1}(\mathbb{R})$, we can assume that $\left\|u_{n}\right\|_{1} \leq 1 / 4 c$ for all $n \in \mathbb{N}$. Let $g_{n}:=\mathbf{1}+\widehat{u}_{n}, n \in \mathbb{N}$. Then the sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ converges to g in \mathbf{B}_{ρ}^{+}and, in view of Lemma 3.5,

$$
1 / g_{n} \in \mathbf{B}_{\rho}^{+}, \quad\left\|1 / g_{n}\right\|_{\rho, c} \leq 4\left\|g_{n}\right\|_{\rho, c}, \quad n \in \mathbb{N}
$$

Since the sequence $\left(1 / g_{n}\right)_{n \in \mathbb{N}}$ is bounded in \mathbf{B}_{ρ}^{+}, we conclude (see, e.g., [5, Chapter 10]) that $1 / g \in \mathbf{B}_{\rho}^{+}$.

Now we consider the general case when $g=\mathbf{1}+\widehat{u}, u \in X_{\rho}^{+}$and g does not vanish in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$. By Lemma 2.3, there exists a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in Y^{+}converging to u in X_{ρ}^{+}. Since X_{ρ} is continuously embedded in $L_{1}(\mathbb{R})$, we can assume that all functions $g_{n}:=\mathbf{1}+\widehat{u}_{n}(n \in \mathbb{N})$ do not vanish in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$, so that (see Lemma 3.4) $1 / g_{n} \in \mathbf{B}_{\rho}^{+}$ for all n. Hence (see Theorem 1.2) the sequence $f_{n}:=g / g_{n}(n \in \mathbb{N})$ belongs to the space \mathbf{B}_{ρ}^{+}and, obviously, converges to $\mathbf{1}$ in the space \mathbf{A}^{+}. Using this fact, we conclude that $f_{n}=\mathbf{1}+\widehat{v}_{n}$, where the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ belongs to X_{ρ}^{+}and converges to zero in $L_{1}(\mathbb{R})$. Thus (see Lemma 3.5) $1 / f_{n} \in \mathbf{B}_{\rho}^{+}$for sufficiently large n. Let $1 / f_{m} \in \mathbf{B}_{\rho}^{+}$ for some $m \in \mathbb{N}$. Since $1 / g=1 / g_{m} \cdot 1 / f_{m}$, in view of Theorem 1.2, we arrive at the conclusion that $1 / g \in \mathbf{B}_{\rho}^{+}$and the proof is complete.

4. PROOF OF THEOREM 1.3.

First, we prove two auxiliary Lemmas that are generalizations of the similar Lemmas in [3, Chapter 3].
Lemma 4.1. Let $\rho \in \mathscr{R}_{0}$ and $\varphi \in L_{r}\left(\mathbb{R}_{+}\right)(r \in[1, \infty])$. If a function $\psi \in X_{\rho}^{+}$is such that the function g is given by

$$
\begin{equation*}
g(x):=\varphi(x)+\int_{0}^{\infty} \varphi(t) \psi(x+t) \mathrm{d} t, \quad x \in \mathbb{R}_{+} \tag{4.1}
\end{equation*}
$$

belongs to the space X_{ρ}^{+}, then $\varphi \in X_{\rho}^{+}$.
Proof. Let $g, \psi \in X_{\rho}^{+}$. Since $X_{\rho}^{+} \subset L_{1}\left(\mathbb{R}_{+}\right)$, then (see [4], Lemma 3.1) $\varphi \in L_{1}\left(\mathbb{R}_{+}\right)$. Taking into account the equalities

$$
g(x)=-\int_{x}^{\infty} g^{\prime}(\xi) \mathrm{d} \xi, \quad \psi(x)=-\int_{x}^{\infty} \psi^{\prime}(\xi) \mathrm{d} \xi, \quad x \in \mathbb{R}_{+}
$$

(4.1) can be represented as

$$
\begin{equation*}
\varphi(x)=-\int_{x}^{\infty} g^{\prime}(\xi) \mathrm{d} \xi+\int_{0}^{\infty} \varphi(t) \int_{x}^{\infty} \psi^{\prime}(\xi+t) \mathrm{d} \xi \mathrm{~d} t \tag{4.2}
\end{equation*}
$$

Since

$$
\int_{0}^{\infty} \int_{0}^{\infty}\left|\psi^{\prime}(\xi+t)\right| \mathrm{d} \xi \mathrm{~d} t=\int_{0}^{\infty} t\left|\psi^{\prime}(t)\right| \mathrm{d} t \leq\|\psi\|_{X_{\rho}^{+}}
$$

applying Fubini's theorem to the iterated integral in (4.2), we get

$$
\varphi(x)=-\int_{x}^{\infty}\left(g^{\prime}(\xi)-\int_{0}^{\infty} \varphi(t) \psi^{\prime}(\xi+t) \mathrm{d} t\right) \mathrm{d} \xi, \quad x \in \mathbb{R}_{+}
$$

Consequently, the function φ belongs to $\mathrm{AC}\left(\mathbb{R}_{+}\right)$and

$$
\varphi^{\prime}(x)=g^{\prime}(x)-\int_{0}^{\infty} \varphi(t) \psi^{\prime}(x+t) \mathrm{d} t, \quad x \in \mathbb{R}_{+} .
$$

Thus

$$
\int_{0}^{\infty} \rho(x)\left|\varphi^{\prime}(x)\right| \mathrm{d} x \leq \int_{0}^{\infty} \rho(x)\left|g^{\prime}(x)\right| \mathrm{d} x+\int_{0}^{\infty} \int_{0}^{\infty}|\varphi(t)|\left|\rho(x+t) \psi^{\prime}(x+t)\right| \mathrm{d} t \mathrm{~d} x
$$

and, therefore, $\|\varphi\|_{X_{\rho}^{+}} \leq\|g\|_{X_{\rho}^{+}}+\|\varphi\|_{1}\|\psi\|_{X_{\rho}^{+}}<\infty$.
Lemma 4.2. Let $\rho \in \mathscr{R}_{0}$ and $\varphi \in L_{1}\left(\mathbb{R}_{+}\right)$and $\psi \in X_{\rho}^{+}$be related via

$$
\begin{equation*}
\varphi(x)+\psi(x)+\int_{0}^{\infty} \varphi(t) \psi(x+t) \mathrm{d} t=0, \quad x \in \mathbb{R}_{+} . \tag{4.3}
\end{equation*}
$$

If the function f is given by the formula

$$
f(\lambda)=1+\int_{0}^{\infty} \varphi(t) e^{\mathrm{i} \lambda t} \mathrm{~d} t, \quad \lambda \in \mathbb{R},
$$

and $f(0)=0$, then there exists $g \in \mathbf{B}_{\rho}^{+}$such that $f(\lambda)=\frac{\lambda}{\lambda+\mathrm{i}} g(\lambda)$.
Proof. Let the conditions of the lemma be satisfied. From Lemma 4.1, it follows that $\varphi \in X_{\rho}^{+}$and thus $f \in \mathbf{B}_{\rho}^{+}$. Let us show that the function

$$
h(x):=\int_{x}^{\infty} \varphi(t) \mathrm{d} t, \quad x \in \mathbb{R}_{+},
$$

belongs to X_{ρ}^{+}. Note that it follows from the condition $f(0)=0$ that $h(0)=-1$. Consider the auxiliary function

$$
\begin{equation*}
\Phi(x):=\int_{0}^{\infty} h^{\prime}(t) \int_{x+t}^{\infty} \psi(\xi) \mathrm{d} \xi \mathrm{~d} t, \quad x \geq 0 \tag{4.4}
\end{equation*}
$$

Integrating by parts, we obtain that

$$
\begin{equation*}
\Phi(x)=\int_{x}^{\infty} \psi(\xi) \mathrm{d} \xi+\int_{0}^{\infty} h(t) \psi(x+t) \mathrm{d} t . \tag{4.5}
\end{equation*}
$$

On the other hand, it follows from (4.4) that

$$
\begin{equation*}
\Phi(x)=-\int_{0}^{\infty} \varphi(t) \int_{x}^{\infty} \psi(y+t) \mathrm{d} y \mathrm{~d} t=-\int_{x}^{\infty} \int_{0}^{\infty} \varphi(t) \psi(y+t) \mathrm{d} t \mathrm{~d} y . \tag{4.6}
\end{equation*}
$$

Taking into account (4.3), (4.5) and (4.6), we get

$$
\int_{x}^{\infty} \psi(\xi) \mathrm{d} \xi+\int_{0}^{\infty} h(t) \psi(x+t) \mathrm{d} t=\int_{x}^{\infty}(\varphi(y)+\psi(y)) \mathrm{d} y
$$

and, therefore,

$$
h(x)+\int_{0}^{\infty} h(t)(-\psi(x+t)) \mathrm{d} t=0, \quad x \in \mathbb{R}_{+} .
$$

Since $h \in L_{\infty}\left(\mathbb{R}_{+}\right)$and $-\psi \in X_{\rho}^{+}$, in view of Lemma 4.1, we conclude that $h \in X_{\rho}^{+}$. Consequently, the function

$$
g_{1}(\lambda):=\mathrm{i} \int_{0}^{\infty} h(t) e^{\mathrm{i} \lambda t} \mathrm{~d} t, \quad \lambda \in \mathbb{R},
$$

belongs to \mathbf{B}_{ρ}^{+}. Integrating by parts, we get

$$
\lambda g_{1}(\lambda)=\int_{0}^{\infty} h(t)\left(\frac{\mathrm{d}}{\mathrm{~d} t} e^{\mathrm{i} \lambda t}\right)=-h(0)+\int_{0}^{\infty} \varphi(t) e^{\mathrm{i} \lambda t} \mathrm{~d} t=f(\lambda) .
$$

Let $g(\lambda):=f(\lambda)+\mathrm{i} g_{1}(\lambda)$. Since $g_{1}, f \in \mathbf{B}_{\rho}^{+}$, we deduce that $g \in \mathbf{B}_{\rho}^{+}$. Moreover, $\lambda(\lambda+\mathrm{i})^{-1} g(\lambda)=\lambda g_{1}(\lambda)=f(\lambda)$.

Below, we list some facts from [3, Chapter 3]. Let $q \in \mathcal{Q}_{\omega}$ and

$$
\sigma(x):=\int_{x}^{\infty}|q(\xi)| \mathrm{d} \xi, \quad \sigma_{1}(x):=\int_{x}^{\infty} \xi|q(\xi)| \mathrm{d} \xi .
$$

1°. The solution of the Jost equation (1.1) can be represented in the form

$$
e(\lambda, x)=e^{\mathrm{i} \lambda x}+\int_{x}^{\infty} K(x, t) e^{\mathrm{i} \lambda t} \mathrm{~d} t, \quad \lambda \in \overline{\mathbb{C}_{+}}, \quad x \in \mathbb{R}_{+},
$$

where the kernel K is continuous on the set $\Omega:=\left\{(x, t) \in \mathbb{R}_{+}^{2} \mid x \leq t\right\}$ and

$$
|K(x, t)| \leq \sigma\left(\frac{x+t}{2}\right) \exp \left\{\sigma_{1}(x)\right\}, \quad(x, t) \in \Omega
$$

2°. For $\lambda \in \mathbb{R} \backslash\{0\}$, the estimate for the derivative of the Jost solution

$$
\begin{equation*}
\left|e^{\prime}(\lambda, x)-\mathrm{i} \lambda e^{\mathrm{i} \lambda x}\right| \leq \sigma(x) \exp \left\{\sigma_{1}(x)\right\}, \quad x \in \mathbb{R}_{+}, \tag{4.7}
\end{equation*}
$$

holds, and the formula

$$
\begin{equation*}
\omega(\lambda, x):=\frac{e(-\lambda, 0) e(\lambda, x)-e(\lambda, 0) e(-\lambda, x)}{2 \mathrm{i} \lambda}, \quad x \in \mathbb{R}_{+}, \tag{4.8}
\end{equation*}
$$

defines a solution of the equation (1.1) satisfying

$$
\begin{equation*}
\omega(\lambda, x)=x(1+o(1)), \quad \omega^{\prime}(\lambda, x)=1+o(1), \quad x \rightarrow+0 . \tag{4.9}
\end{equation*}
$$

3°. The function $\overline{\mathbb{C}_{+}} \backslash\{0\} \ni \lambda \mapsto e(\lambda):=e(\lambda, 0)$ has a finite number of zeros which are simple and lie on the imaginary line.
4°. The kernel K is a solution of the Marchenko equation

$$
\begin{equation*}
F(x+t)+K(x, t)+\int_{x}^{\infty} K(x, \xi) F(\xi+t) \mathrm{d} \xi=0, \quad(x, t) \in \Omega \tag{4.10}
\end{equation*}
$$

with F given by

$$
\begin{equation*}
F(x):=\sum_{s=1}^{n} m_{s} e^{-\kappa_{s} x}+F_{S}(x), \quad x \geq 0 \tag{4.11}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{S}(x):=\frac{1}{2 \pi} \int_{\mathbb{R}}(1-S(\lambda)) e^{\mathrm{i} \lambda x} \mathrm{~d} \lambda, \quad x \in \mathbb{R} . \tag{4.12}
\end{equation*}
$$

5°. The function F belongs to the class $\mathrm{AC}\left(\mathbb{R}_{+}\right)$and there exists a constant $C_{1}>0$ such that

$$
\begin{equation*}
\left|F^{\prime}(2 x)-q(x) / 4\right| \leq C_{1} \sigma^{2}(x), \quad x>0 . \tag{4.13}
\end{equation*}
$$

Lemma 4.3. Let $q \in \mathcal{Q}_{\omega}$ and the function F be given by formula (4.11). Then for each $\rho \in \mathscr{R}$ the function q belongs to the class \mathcal{Q}_{ρ} if and only if $F \in X_{\rho}^{+}$.
Proof. 1) Let $\rho \in \mathscr{R}$ and $q \in \mathcal{Q}_{\rho}$. Then for an arbitrary $\gamma \geq 0$,

$$
\rho(x) \sigma(x) \leq \int_{x}^{\infty} \rho(t)|q(t)| \mathrm{d} t \leq \int_{\gamma}^{\infty} \rho(t)|q(t)| \mathrm{d} t, \quad x \geq \gamma
$$

and

$$
\int_{\gamma}^{\infty} \sigma(x) \mathrm{d} x=\int_{\gamma}^{\infty} \int_{x}^{\infty}|q(t)| \mathrm{d} t \mathrm{~d} x \leq \int_{\gamma}^{\infty} t|q(t)| \mathrm{d} t<\infty .
$$

Thus

$$
\begin{align*}
\int_{\gamma}^{\infty} \rho(x) \sigma^{2}(x) \mathrm{d} x & \leq\left(\int_{\gamma}^{\infty} \rho(t)|q(t)| \mathrm{d} t\right)\left(\int_{\gamma}^{\infty} \sigma(x) \mathrm{d} x\right) \\
& \leq\left(\int_{\gamma}^{\infty} \rho(t)|q(t)| \mathrm{d} t\right)\left(\int_{\gamma}^{\infty} t|q(t)| \mathrm{d} t\right)<\infty . \tag{4.14}
\end{align*}
$$

It follows from (4.13) that

$$
\left|F^{\prime}(2 x)\right| \leq|q(x)|+C_{1} \sigma^{2}(x), \quad x>0 .
$$

Using this estimate and (2.7), we get

$$
\begin{aligned}
\int_{0}^{\infty} \rho(2 x)\left|F^{\prime}(2 x)\right| \mathrm{d} x & \leq c \int_{0}^{\infty} \rho(x)\left|F^{\prime}(2 x)\right| \mathrm{d} x \\
& \leq c \int_{0}^{\infty} \rho(x)|q(x)| \mathrm{d} x+c C_{1} \int_{0}^{\infty} \rho(x) \sigma^{2}(x) \mathrm{d} x<\infty
\end{aligned}
$$

and hence $F \in X_{\rho}^{+}$as claimed.
2) Let $q \in \mathcal{Q}_{\omega}$ and $F \in X_{\rho}^{+}$. It follows from (4.13) that

$$
\begin{equation*}
|q(x)| \leq 4\left|F^{\prime}(2 x)\right|+4 C_{1} \sigma^{2}(x), \quad x>0 . \tag{4.15}
\end{equation*}
$$

Let us fix $\gamma>0$ for which

$$
\begin{equation*}
\int_{\gamma}^{\infty} t|q(t)| \mathrm{d} t \leq \frac{1}{8 C_{1}} \tag{4.16}
\end{equation*}
$$

and put

$$
\rho_{n}(x):=\min \{\rho(x), n+x\}, \quad x \geq 0, \quad n \in \mathbb{N} .
$$

Obviously, that $\rho_{n} \in \mathscr{R}$. Using the estimate (4.15), we obtain that for an arbitrary $n \in \mathbb{N}$,

$$
\begin{equation*}
\int_{\gamma}^{\infty} \rho_{n}(x)|q(x)| \mathrm{d} x \leq 4 \int_{\gamma}^{\infty} \rho_{n}(2 x)\left|F^{\prime}(2 x)\right| \mathrm{d} x+4 C_{1} \int_{\gamma}^{\infty} \rho_{n}(x) \sigma^{2}(x) \mathrm{d} x . \tag{4.17}
\end{equation*}
$$

From (4.14) and (4.16), we deduce that

$$
4 C_{1} \int_{\gamma}^{\infty} \rho_{n}(x) \sigma^{2}(x) \mathrm{d} x \leq 4 C_{1} \int_{\gamma}^{\infty} \xi|q(\xi)| \mathrm{d} \xi \int_{\gamma}^{\infty} \rho_{n}(t)|q(t)| \mathrm{d} t \leq \frac{1}{2} \int_{\gamma}^{\infty} \rho_{n}(t)|q(t)| \mathrm{d} t
$$

Thus, in view of (4.17), we get

$$
\int_{\gamma}^{\infty} \rho_{n}(x)|q(x)| \mathrm{d} x \leq 8 \int_{\gamma}^{\infty} \rho_{n}(2 x)\left|F^{\prime}(2 x)\right| \mathrm{d} x \leq 4 \int_{0}^{\infty} \rho(x)\left|F^{\prime}(x)\right| \mathrm{d} x .
$$

Using the monotone convergence theorem, we have

$$
\int_{\gamma}^{\infty} \rho(x)|q(x)| \mathrm{d} x \leq 4 \int_{0}^{\infty} \rho(x)\left|F^{\prime}(x)\right| \mathrm{d} x<\infty
$$

and hence $q \in \mathcal{Q}_{\rho}$.
Proof of Theorem 1.3. First, we prove sufficiency. Let $\rho \in \mathscr{R}, S \in \mathcal{S}_{\rho}$ and $n:=$ [- ind $S / 2$]. Since $\mathcal{S}_{\rho} \subset \mathcal{S}_{\omega}$, in view of the results of [4], we conclude that S is the scattering function for some operator T_{q} with $q \in \mathcal{Q}_{\omega}$. Since $S \in \mathcal{S}_{\rho}$, the function F_{S} (see (4.12)) belongs to the space X_{ρ}. Therefore, the function F, given by the formula (4.11), belongs to the space X_{ρ}^{+}. In view of Lemma 4.3, we have that $q \in \mathcal{Q}_{\rho}$ so that every function $S \in \mathcal{S}_{\rho}$ is the scattering function of some operator T_{q} with $q \in \mathcal{Q}_{\rho}$ as claimed.

Let us prove necessity. Let $q \in \mathcal{Q}_{\rho}$. We need to prove that $S_{q} \in \mathcal{S}_{\rho}$. Since $q \in \mathcal{Q}_{\rho}$, in view of Lemma 4.3, we conclude that $F \in X_{\rho}^{+}$. It follows from the Marchenko equation (4.10) that

$$
F(t)+K(0, t)+\int_{0}^{\infty} K(0, \xi) F(\xi+t) \mathrm{d} \xi=0, \quad t>0
$$

Thus in view of Lemma 4.1 the function $\mathbb{R}_{+} \ni t \mapsto K(0, t)$ belongs to the space X_{ρ}^{+} and, therefore, the Jost function

$$
e(\lambda)=1+\int_{0}^{\infty} K(0, t) e^{\mathrm{i} \lambda t} \mathrm{~d} t, \quad \lambda \in \overline{\mathbb{C}_{+}},
$$

belongs to the space \mathbf{B}_{ρ}^{+}.

1) Suppose that $e(0) \neq 0$. Then, in view of 3°, the function e has a finite number of zeros in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$. All these zeros are simple and can be represented as $z=\mathrm{i} \kappa_{j}$, where $\left\{\kappa_{j}\right\}_{j=1}^{n} \subset \mathbb{R}_{+}$. Let us consider the Blaschke product

$$
\begin{equation*}
b(\lambda)=\prod_{j=1}^{n} \frac{\lambda-\mathrm{i} \kappa_{j}}{\lambda+\mathrm{i} \kappa_{j}} \tag{4.18}
\end{equation*}
$$

and the functions

$$
f(\lambda):=\frac{e(-\lambda)}{b(\lambda)}, \quad g(\lambda):=\frac{e(\lambda)}{b(\lambda)}, \quad \lambda \in \mathbb{R} .
$$

It follows from Lemma 3.4 and Theorem 1.2 that $f, g \in \mathbf{B}_{\rho}$. Obviously, $g \in \mathbf{A}^{+}$, and thus $g \in \mathbf{B}_{\rho}^{+}$. Moreover, the function g does not vanish in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$. Therefore, in view of Theorem 3.6, we obtain that $1 / g \in \mathbf{B}_{\rho}^{+}$. Since $S=f / g$ and \mathbf{B}_{ρ} is an algebra, we deduce that $S \in \mathbf{B}_{\rho}$.
2) Suppose that $e(0)=0$. Taking into account (4.10) and Lemma 4.2, we get that $e(\lambda)=\frac{\lambda}{\lambda+\mathrm{i}} h(\lambda)$, where $h \in \mathbf{B}_{\rho}^{+}$. Let us show that $h(0) \neq 0$. It follows from (4.7) that there exists $C>0$ such that $\left|e^{\prime}(\lambda, x)\right| \leq C$ for $x \in \mathbb{R}_{+}$and $\lambda \in[-1,1] \backslash\{0\}$. Thus (see (4.8))

$$
\left|\omega^{\prime}(\lambda, x)\right| \leq C(|h(-\lambda)|+|h(\lambda)|), \quad x \in \mathbb{R}_{+}, \quad \lambda \in[-1,1] \backslash\{0\} .
$$

Therefore, taking into account (4.9), we have

$$
1=\lim _{x \rightarrow+0}\left|\omega^{\prime}(\lambda, x)\right| \leq C(|h(-\lambda)|+|h(\lambda)|), \quad \lambda \in[-1,1] \backslash\{0\} .
$$

Since the function h is continuous, we obtain that $h(0) \neq 0$. In view of 3°, the function h has a finite number of zeros in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$. All these zeros are simple and can be represented as $z=\mathrm{i} \kappa_{j}$, where $\left\{\kappa_{j}\right\}_{j=1}^{n} \subset \mathbb{R}_{+}$. Let us consider the functions

$$
f(\lambda):=\frac{\lambda+\mathrm{i}}{\lambda-\mathrm{i}} \frac{h(-\lambda)}{b(\lambda)}, \quad g(\lambda):=\frac{h(\lambda)}{b(\lambda)}, \quad \lambda \in \mathbb{R}
$$

where b is the Blaschke product given by the formula (4.18). It follows from Lemma 3.4 and Theorem 1.2 that $f, g \in \mathbf{B}_{\rho}$. Obviously, $g \in \mathbf{B}_{\rho}^{+}$and the function g does not vanish in $\overline{\mathbb{C}_{+}} \cup\{\infty\}$. It follows from Theorem 3.6 that $1 / g \in \mathbf{B}_{\rho}$. Since $S=f / g$ and \mathbf{B}_{ρ} is an algebra, we arrive at the conclusion that $S \in \mathbf{B}_{\rho}$. Therefore, the proof is complete.

APPENDIX

A. OPERATOR T_{q}

In this appendix, we will give the explicit definition of the operator T_{q}.
We denote by C_{0}^{∞} the linear space of all functions on the half-line with compact support that are infinitely often differentiable. Also we denote by W_{2}^{1} the Sobolev space of functions $f \in \mathrm{AC}[0, \infty)$ for which

$$
\|f\|_{W_{2}^{1}}^{2}:=\int_{0}^{\infty}\left(|f(x)|^{2}+\left|f^{\prime}(x)\right|^{2}\right) \mathrm{d} x<\infty
$$

Let q be a locally integrable real-valued function on \mathbb{R}_{+}and

$$
\begin{equation*}
\int_{0}^{\infty} x|q(x)| \mathrm{d} x<\infty \tag{A.1}
\end{equation*}
$$

We consider the symmetric sesqulinear forms \mathfrak{t}_{0} and \mathfrak{q} that are defined on the common domain $W_{2,0}^{1}:=\left\{f \in W_{2}^{1} \mid f(0)=0\right\}$ by the formulas

$$
\mathfrak{t}_{0}[f, g]:=\int_{0}^{\infty} f^{\prime}(x) \overline{g^{\prime}(x)} \mathrm{d} x, \quad \mathfrak{q}[f, g]:=\int_{0}^{\infty} q(x) f(x) \overline{g(x)} \mathrm{d} x .
$$

Note that the form \mathfrak{t}_{0} is nonnegative and closed (see [1], Ch.VI-§1.3). We will show that the form \mathfrak{q} is \mathfrak{t}_{0}-bounded (see [1], Ch.VI-§1.6). We represent the function q (see (A.1)) as the sum $q_{1}+q_{2}$, where $q_{1} \in C_{0}^{\infty}$ and q_{2} satisfies the following condition:

$$
\int_{0}^{\infty} x\left|q_{2}(x)\right| \mathrm{d} x \leq b<1
$$

Using the Cauchy-Schwarz inequality, we get that for $f \in W_{2,0}^{1}$

$$
|f(x)|^{2}=\left|\int_{0}^{x} f^{\prime}(t) \mathrm{d} t\right|^{2} \leq x \int_{0}^{x}\left|f^{\prime}(t)\right|^{2} \mathrm{~d} t \leq x \mathfrak{t}_{0}[f], \quad x \in \mathbb{R}_{+}
$$

where $\mathfrak{t}_{0}[f]:=\mathfrak{t}_{0}[f, f]$. Thus for all $f \in W_{2,0}^{1}$

$$
|\mathfrak{q}[f]| \leq \int_{0}^{\infty}\left|q_{1}(x)\right||f(x)|^{2} \mathrm{~d} x+\int_{0}^{\infty}\left|q_{2}(x)\left\|\left.f(x)\right|^{2} \mathrm{~d} x \leq a\right\| f \|^{2}+b \mathfrak{t}_{0}[f]\right.
$$

where $a:=\max \left|q_{1}(x)\right|$. Consequently, the form \mathfrak{q} is \mathfrak{t}_{0}-bounded with $b<1$. Therefore (see [1, Chapter VI, §1.6]), the symmetric form $\mathfrak{t}=\mathfrak{t}_{0}+\mathfrak{s}$ is bounded from below and closed. By the first representation theorem (see [1, Chapter VI, §2.1]), there exists the unique self-adjoint operator T_{q} that is associated with \mathfrak{t}. Its domain consists of functions $f \in W_{2,0}^{1}$ for which there exists $h \in L_{2}\left(\mathbb{R}_{+}\right)$such that

$$
\begin{equation*}
\mathfrak{t}[f, g]=(h \mid g), \quad g \in W_{2,0}^{1} . \tag{A.2}
\end{equation*}
$$

If (A.2) holds, then $T_{q} f=h$. Let $f \in \operatorname{dom} T_{q}$. Then for some $h \in L_{2}\left(\mathbb{R}_{+}\right)$

$$
\left(f^{\prime} \mid g^{\prime}\right)=(h-q f \mid g), \quad g \in C_{0}^{\infty} .
$$

Thus we have that $-f^{\prime \prime}=h-q f$ in the sense of distribution theory. It means that $f^{\prime} \in \mathrm{AC}(0, \infty)$ and $\left(-f^{\prime \prime}+q f\right)=h \in L_{2}(0, \infty)$. Therefore,

$$
\operatorname{dom} T_{q}:=\left\{f \in W_{2,0}^{1} \mid f^{\prime} \in \mathrm{AC}(0, \infty), \quad\left(-f^{\prime \prime}+q f\right) \in L_{2}\left(\mathbb{R}_{+}\right)\right\}
$$

and

$$
T_{q} f:=-f^{\prime \prime}+q f, \quad f \in \operatorname{dom} T_{q} .
$$

REFERENCES

[1] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin Heidelberg - New York, 1980.
[2] Y. Katznelson, An Introduction to Harmonic Analysis, 3rd ed., Cambridge University Press, 2004.
[3] V.A. Marchenko, Sturm-Liouville Operators and their Applications, Kiev: Naukova Dumka, 1977 [in Russian]; Engl. transl., Basel., Birkhäuser, 1986.
[4] Ya. Mykytyuk, N. Sushchyk, Inverse scattering problems for half-line Schrödinger operators and Banach algebras, Opuscula Math. 38 (2018), 719-731.
[5] W. Rudin, Functional Analysis, McGraw Hill, New York, 1973.
[6] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd ed., Oxford University Press, 1948.
[7] N. Wiener, Tauberian theorems, Ann. of Math. 33 (1932), 1-100.
[8] N. Wiener, Generalized Harmonic Analysis and Tauberian Theorems, MIT Press, Cambridge, MA/London, 1966.

Yaroslav Mykytyuk yamykytyuk@yahoo.com

Lviv National University
1 Universytets'ka Str., 79602 Lviv, Ukraine
Nataliia Sushchyk
n.sushchyk@gmail.com

Lviv National University
1 Universytets'ka Str., 79602 Lviv, Ukraine
Received: January 26, 2019.
Revised: March 19, 2019.
Accepted: March 20, 2019.

