PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Imprints of atmospheric waves on the Black Sea surface in data of ocean color scanners

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Data from MERIS onboard Envisat and MODIS onboard Terra and Aqua for 15-16 May 2010 were used to study powerful imprints of atmospheric gravity waves (AGWs) on the western part the Black Sea surface. Two cold fronts crossed the sea following the warm front and caused the AGWs which modulated the sea surface. Imprints of AGWs appeared as stripes of alternating brightness, they had crest length more than a hundred kilometers and wavelength of units of kilometers. Wave amplitude of AGWs imprints, evaluated by a 90%-depth of light penetration into the sea at 490 nm z90, the value inverse to the diffuse attenuation coefficient Kd_490, was units of decimeterxs. MODIS 250-m data of remote sensing reflectance, wind components and atmospheric pressure near the sea surface were obtained by processing the top of atmosphere data with the SeaDAS software package. Negative correlations of fluctuations of z90 with fluctuations of wind stress and atmospheric pressure were found on the transects of more than ten kilometers. The impact of wind stress on the origination of AGW imprints was found to be determinant, while the impact of atmospheric pressure was not more than units of percent.
Czasopismo
Rocznik
Strony
255--266
Opis fizyczny
Bibliogr. 39 poz., fot., mapa, rys., wykr.
Twórcy
  • P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, 36 Nakhimovski prospect, 117997 Moscow, Russia
Bibliografia
  • [1] Alpers, W., Brummer, B., 1994. Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite. J. Geophys. Res-Oceans. 99 (C6), 12613-12621, https://doi.org/10.1029/94JC00421.
  • [2] Alpers, W., Huang, W., 2011. On the discrimination of radar signatures of atmospheric gravity waves and oceanic internal waves on synthetic aperture radar images of the sea surface. IEEE T. Geosci. Remote. 49 (3), 1114-1126, https://doi.org/10.1109/TGRS.2010.2072930.
  • [3] Alpers, W., Huang, W., Xilin, G., 2008. Observations of atmospheric gravity waves over the Chinese seas by spaceborne synthetic aperture radar. Proc. Dragon (ESA SP-655, April 2008).
  • [4] Chanson, H., 2010. Undular bores. In: Second International Conference on Coastal Zone Engineering and Management. November 1-3, 2010. Muscat, Oman, 12 pp.
  • [5] Cheng, C. M., Alpers, W., 2010. Investigation of trapped atmospheric gravity waves over the South China Sea using Envisat synthetic aperture radar images. Int. J. Remote Sens. 31 (17-18), 4725-4742, https://doi.org/10.1080/01431161.2010.485145.
  • [6] Coleman, T. A., Knupp, K., Herzmann, D. E., 2010. An Undular Bore and Gravity Waves Illustrated by Dramatic Time-Lapse Photography. J. Atmos. Ocean. Tech. 27 (8), 1355-1361, https://doi.org/10.1175/2010JTECHA1472.1.
  • [7] Da Silva, J. C. B., Magalhaes, J. M., 2009. Satellite observations of large atmospheric gravity waves in the Mozambique Channel. Int. J. Remote Sens. 30 (5), 1161-1182, https://doi.org/10.1080/01431160802448943.
  • [8] Donn, W. L., McGuinness, W. T., 1960. Air-coupled long waves in the ocean. J. Meteorol. 17, 515-521, https://doi.org/10.1175/1520-0469(1960)017(0515:ACLWIT)2.0.CO;2.
  • [9] Evdoshenko, M. A., 2014. Meteorological Waves (by Ocean Color Scanner Data). Dokl. Earth Sci. 458 (2), 1241-1245, https://doi.org/10.1134/S1028334X14100043.
  • [10] Evdoshenko, M. A., 2016. Detecting imprints of atmospheric waves in the Bering Sea with MODIS data. Oceanologia 58 (4), 264-271, https://doi.org/10.1016/j.oceano.2016.04.003.
  • [11] Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., Edson, J. B., 2003. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climatol. 16 (4), 571-591, https://doi.org/10.1175/1520-0442(2003)016(0571:BPOASF)2.0.CO;2.
  • [12] Franz, B. A., Werdell, P., Meister, G., Kwaitkowska, E. J., Bailey, S., Ahmad, Z., McClain, C. R., 2006. MODIS land bands for ocean remote sensing applications. Proc. P. Soc. Photo-Opt. Ins. XVIII. Montreal, Canada 9-13 October. https://www.researchgate.net/publication/234025610.
  • [13] Gordon, H. R., McCluney, W. R., 1975. Estimation of the depth of sunlight penetration in the sea for remote sensing. Appl. Optics 14 (2), 413-416, https://doi.org/10.1364/AO.14.000413.
  • [14] Hale, G. M., Querry, M. R., 1973. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Optics 12 (3), 555-563, https://doi.org/10.1364/AO.12.000555.
  • [15] Karabashev, G. S., Evdoshenko, M. A., Sheberstov, S. V., 2007. Correlation of distributions of normalized spectral radiances as an indication of specific features of water exchange in the Black Sea. Oceanology 47 (3), 325-333, https://doi.org/10.1134/S0001437007.
  • [16] Knyazev, V. Yu., Kossyi, I. A., Malykh, N. I., Yampolskii, E. S., 2003. Penetration of microwave radiation into water: Effect of induced transparency. Tech. Phys. 48, 1489-1492, https://doi.org/10.1134/1.1626786.
  • [17] Kochanski, A., Koracin, D., Dorman, C. E., 2006. Comparison of wind-stress algorithms and their influence on wind-stress curl using buoy measurements over the shelf off Bodega Bay, California. Deep-Sea Res. Pt. 53 (25-26), 2865-2886, https://doi.org/10.1016/j.dsr2.2006.07.008.
  • [18] Lee, Z-P., Darecki, M., Carder, K. L., Davis, C. O., Stramski, D., Rhea, W. J., 2005. Diffuse attenuation coefficient of down-welling irradiance: An evaluation of remote sensing methods. J. Geophys. Res.-Oceans. 110 (C02017), https://doi.org/10.1029/2004JC002573.
  • [19] Li, X., Dong, C., Clemente-Colón, P., Pichel, W. G., Friedman, K. S., 2004. Synthetic aperture radar observation of the sea surface imprints of upstream atmospheric solitons generated by flow impeded by an island. J. Geophys. Res.-Oceans 109 (C2), C02016, https://doi.org/10.1029/2003JC002168.
  • [20] Li, X., Zheng, W., Zou, C.-Z., Pichel, W. G., 2008. A SAR observation and numerical study on ocean surface imprints of atmospheric vortex streets. Sensors 8 (5), 3321-3334, https://doi.org/10.3390/s8053321.
  • [21] Li, X., Zheng, W., Yang, X., Li, Z., Pichel, W. G., 2011. Sea surface imprints of coastal mountain lee waves imaged by synthetic aperture radar. J. Geophys. Res.-Oceans 116 (C2), C02014, https://doi.org/10.1029/2010JC006643.
  • [22] Liu, A. Q., Moore, G. W. K., Tsuboki, K., Renfrew, I. A., 2004. A high-resolution simulation of convective roll clouds during a cold-air outbreak. Geophys. Res. Lett. 31 (3), https://doi.org/10.1029/2003gl018530.
  • [23] Liu, S., Li, Z., Yang, X., Pichel, W., Yu, Y., Zheng, Q., Li, X., 2010. Atmospheric frontal gravity waves observed in satellite SAR images of the Bohai Sea and Huanghai Sea. Acta Oceanol. Sin. 29 (5), 35-43, https://doi.org/10.1007/s13131-010-0061-8.
  • [24] Magalhaes, J. M., Araújo, I. B., da Silva, J. C. B., Grimshaw, R. H. J., Davis, D., Pineda, J., 2011. Atmospheric gravity waves in the Red Sea: a new hotspot. Nonlinear Proc. Geoph. 18, 71-79, https://doi.org/10.5194/npg-18-71-2011.
  • [25] Malacic, V., Orlic, M., 1993. On the origin of the inverted-barometer effect at subinertial frequencies. Il Nuovo Cimento. Maggio-Glugno. 16 C (3), 265-288, https://doi.org/10.1007/BF02524229.
  • [26] Monserrat, S., Vilibic, I., Rabinovich, A. B., 2006. Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Nat. Hazard Earth Sys. 6 (6), 1035-1051, https://doi.org/10.5194/nhess-6-1035-2006.
  • [27] Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., Franz, B. A., 2007. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111 (1), 69-88, https://doi.org/10.1016/j.rse.2007.03.012.
  • [28] Nappo, C. J., 2002. An introduction to atmospheric gravity waves. International Geophysics, Acad. Press, 276 pp.
  • [29] Pegau, W. S., Gray, D., Zaneveld, J. R. V., 1997. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Optics 36 (24), 6035-6046, https://doi.org/10.1364/AO.36.006035.
  • [30] Phillips, O., 1977. The dynamics of the upper ocean (2nd edn.). Cambridge Univ. Press, 344 pp.
  • [31] Plougonven, R., Zhang, F., 2014. Internal gravity waves from atmospheric jets and fronts. AGU. Rev. Geophys. 52 (1), 32-76, https://doi.org/10.1002/2012RG000419.
  • [32] Rabinovich, A. B., 2008. Seiches and Harbour Oscillations. In: Kim, Y. (Ed.), Handbook of Coastal and Ocean Engineering World Scientific. California State Univ., Los Angeles, 193-236.
  • [33] Sachsperger, J., Serafin, S., Grubi, V., Stiperskic, I., Pacid, A., 2018. The amplitude of lee waves on the boundary-layer inversion. Q. J. Roy. Meteor. Soc. 143 (702), 27-36, https://doi.org/10.1002/qj.2915.
  • [34] Sheberstov, S. V., Lukyanova, E. A., 2007. A system for acquisition, processing and storage of satellite and field biooptical data. In: Proc. IV Int. Conf.: Current Problems in Optics of Natural Waters. Nizhny Novgorod, September 11-15, 179-183.
  • [35] Suslin, V. V., Slabakova, V. R., Churilova, T. Y., 2017. Diffuse attenuation coefficient for downwelling irradiance at 490 nm and its spectral characteristics in the Black Sea upper layer: modeling, in situ measurements and ocean color data. In: Proc. SPIE, 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 10466, 104663H, https://doi.org/10.1117/12.2287367.
  • [36] Vachon, P. W., Johannessen, O. M., Johannessen, J. A., 1994. An ERS 1 synthetic aperture radar image of atmospheric lee waves. J. Geophys. Res.-Oceans 99 (C11), 22483-22490, https://doi.org/10.1029/94JC01392.
  • [37] Valenzuela, G. R., 1978. Theories for the interaction of electromagnetic and oceanic waves — a review. Bound.-Lay. Meteorol. 13, 61-85, https://doi.org/10.1007/BF00913863.
  • [38] Wunsch, C., Stammer, D., 1997. Atmospheric loading and the oceanic "inverted barometer" effect. Rev. Geophys. 35 (1), 79-107, https://doi.org/10.1029/96RG03037.
  • [39] Zheng, Q., Yan, X.-H., Klemas, V., Ho, C.-R., Kuo, N.-J., Wang, Z., 1998. Coastal lee waves on ERS-1 SAR images. J. Geophys. Res.-Oceans 103 (C4), 7979-7993, https://doi.org/10.1029/97JC02176.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-813f47c2-7926-4256-92f8-6484b1929c3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.