PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Markov morphisms: a combined copula and mass transportation approach to multivariate quantiles

Identyfikatory
Warianty tytułu
PL
Morfizmy markowskie: zespolone podejście do wielowymiarowych kwantyli oparte o funkcje łącznikowe i zagadnienie transportowe
Języki publikacji
EN
Abstrakty
EN
Our purpose is both conceptual and practical. On the one hand, we discuss the question which properties are basic ingredients of a general conceptual notion of a multivariate quantile. We propose and argue that the object “quantile” should be defined as a Markov morphism which carries over similar algebraic, ordering and topological properties as known for quantile functions on the real line. On the other hand, we also propose a practical quantile Markov morphism which combines a copula standardization and the recent optimal mass transportation method of Chernozhukov et al.(2017). Its empirical counterpart has the advantages of being a bandwidth-free, monotone invariant, a.s. consistent transformation. The proposed approach gives a general and unified framework to quantiles and their corresponding depth areas, for both a continuous or a discrete multivariate distribution.
PL
W artykule zaproponowano pewien sposobu wprowadzania kwantyli wielowymiarowych, jak i metody ich wyznaczania. Z jednej strony podstawą rozważań są podstawowe własności uogólnionego pojęcia wielowymiarowego kwantyla, który jest morfizmem markowskim, zachowującym podobne własności algebraiczne, topologiczne oraz porządku, jakie znamy dla linii kwantylowych na prostej rzeczywistej. Z drugiej zaś strony, zaproponowano morfiz markowski, który łączy standaryzowaną kopułę (funkcję łącznikową) z zastosowaniem zagadnienia transportowego (v. Chernozhukov et al.(2017). Proponowane podejście daje ogólne i jednolite podejście do definicji kwantyli i ich estymacji, zarówno dla ciągłych, jak i dyskretnych rozkładów wielowymiarowych.
Rocznik
Strony
21--63
Opis fizyczny
Bibliogr. 64 poz., fot.
Twórcy
  • University of Toulouse Capitole, Toulouse School of Economics, Manufacture des Tabacs, Bureau MF319, 21 Allée de Brienne, 31000 Toulouse, France
  • University of Freiburg, Abteilung für Mathematische Stochastik, Albert-Ludwigs University of Freiburg, Eckerstraße 1, D–79104 Freiburg, Germany
Bibliografia
  • [1] J.-P. Aubin and H. Frankowska. Set-valued analysis, volume 2 of Systems & Control: Foundations & Applications. Birkh¨auser Boston, Inc., Boston, MA, 1990. ISBN 0-8176-3478-9. MR 1048347.
  • [2] T. S. Blyth. Lattices and ordered algebraic structures. Universitext. Springer-Verlag London, Ltd., London, 2005. ISBN 1-85233-905-5. MR 2126425.
  • [3] Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math., 44 (4): 375-417, 1991. ISSN 0010-3640; 1097-0312/e. doi: 10.1002/cpa.3160440402; Zbl 0738.46011; MR 1100809.
  • [4] M. Bunge. Two faces and three masks of probability. In E. Agazzi, editor, Probability in the Sciences, pages 27-49. Springer Netherlands, Dordrecht, 1988. ISBN 978-94-009-3061-2. doi: 10.1007/978-94-009-3061-2_2.
  • [5] N. Chentsov. Statistical decision rules and optimal inference. Transl. from the Russian by the Israel Program for Scientific Translations; ed. by Lev J. Leifman. Translation of Mathematical Monographs, 53. Providence, R.I.: American Mathematical Society (AMS). VIII, 499 p. , 1982. MR 0645898; Zbl 0484.62008.
  • [6] V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry. Monge–Kantorovich depth, quantiles, ranks and signs. Ann. Statist., 45 (1): 223-256, 2017. ISSN 0090-5364. doi: 10.1214/16-AOS1450. MR 3611491.
  • [7] M. Csörgő and P. Révész. Strong Approximations in Probability and Statistics. Probability and Mathematical Statistics. Academic Press, Inc. New York-London and Akadémiai Kiadó, Budapest, 1981. ISBN 0-12-198540-7. MR 666546.
  • [8] J. A. Cuesta-Albertos, L. Rüschendorf, and A. Tuero-Diaz. Optimal coupling of multivariate distributions and stochastic processes. Journal of Multivariate Analysis, 46: 335-361, 1993. ISSN 0047-259X. doi: http://dx.doi.org/10.1006/jmva.1993.1064. URL http://www.sciencedirect.com/science/article/pii/S0047259X8371064X.
  • [9] J. A. Cuesta-Albertos, C. Matran, and A. Tuero-Diaz. Optimal transportation plans and convergence in distribution. Journal of Multivariate Analysis, 60: 72-83, 1997. ISSN 0047-259X. doi: http://dx.doi.org/10.1006/jmva.1996.1627.
  • [10] B. A. Davey and H. A. Priestley. Introduction to Lattice and Orders. Cambridge University Press, New York, second edition, 2002. ISBN 0-521-78451-4. doi: 10.1017/CBO9780511809088. MR 1902334.
  • [11] P. Deheuvels. La fonction de dépendance empirique et ses propriétés, un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. (5), 65 (6): 274-292, 1979. ISSN 0001-4141. MR 573609.
  • [12] P. Deheuvels. A multivariate Bahadur-Kiefer representation for the empirical copula process. Journal of Mathematical Sciences, 163 (4): 382-398, 2009. ISSN 1573-8795. doi: 10.1007/s10958-009-9681-y.
  • [13] O. P. Faugeras. Sklar’s theorem derived using probabilistic continuation and two consistency results. Journal of Multivariate Analysis, 122: 271-277, 2013. ISSN 0047-259X. doi: 10.1016/j.jmva.2013.07.010. MR 3189323.
  • [14] O. P. Faugeras. Maximal coupling of empirical copulas for discrete vectors. Journal of Multivariate Analysis, 137 (11): 179-186, 2015. ISSN 0047-259X. doi: https://doi.org/10.1016/j.jmva.2015.02.013. URL http://www.sciencedirect.com/science/article/pii/S0047259X15000482.
  • [15] J.-D. Fermanian, D. Radulovic, and M. Wegkamp. Weak convergence of empirical copula processes. Bernoulli, 10 (5): 847-860, 2004. ISSN 1350-7265. doi: 10.3150/bj/1099579158. MR 2093613.
  • [16] W. Gilchrist. Statistical Modelling with Quantile Functions. Chapman and Hall/CRC, 2000.
  • [17] M. Hallin, D. Paindaveine, and M. Siman. Multivariate quantiles and multiple-output regression quantiles: From L1 optimization to halfspace depth. The Annals of Statistics, 38 (2): 635-669, 04 2010. ISSN 0090-5364. doi: 10.1214/09-AOS723. MR 2604670.
  • [18] O. Kallenberg. Foundations of Modern Probability. Springer, 1997. ISBN 0-387-94957-7. MR 1464694.
  • [19] W. F. Lawvere and R. Rosebrugh. Sets for Mathematics. Cambridge University Press, 2003. ISBN 0-521-80444-2; 0-521-01060-8. doi: 10.1017/CBO9780511755460. MR 1965482.
  • [20] W. F. Lawvere and S. H. Schanuel. Conceptual Mathematics. Cambridge University Press, Cambridge, second edition, 2009. ISBN 978-0-521-71916-2. doi: 10.1017/CBO9780511804199. A first introduction to categories. MR 2546886.
  • [21] S. Mac Lane and G. Birkhoff. Algebra. AMS Chelsea Publishing Series. Chelsea Publishing Company, 3rd edition, 1999. ISBN 0-8284-0330-9. MR 941522.
  • [22] W. A. Massey. Stochastic orderings for markov processes on partially ordered spaces. Mathematics of operation research, 12 (2): 350-367, 1987. ISSN 0364-765X. doi: 10.1287/moor.12.2.350. MR 888982.
  • [23] D. S. Moore and M. C. Spruill. Unified large-sample theory of general chi-squared statistics for tests of fit. The Annals of Statistics, 3 (3): 599-616, 1975. ISSN 0090-5364. MR 0375569.
  • [24] A. Müller. Stochastic orders generated by integrals: a unified study. Adv. Apppl. Prob., 29: 414-428, 1997. ISSN 0001-8678. doi: 10.2307/1428010. MR 1450937.
  • [25] R. B. Nelsen. An introduction to copulas. Springer Series in Statistics. Springer, New York, second edition, 2006. ISBN 978-0387-28659-4; 0-387-28659-4. MR 2197664.
  • [26] K. R. Parthasarathy. Probability measures on metric spaces. Probability and Mathematical Statistics, No. 3. Academic Press, Inc., New York-London, 1967. ISBN 0-8218-3889-X. MR 0226684.
  • [27] E. Parzen. Nonparametric statistical data modeling. Journal of the American Statistical Association, 74 (365): 105-121, 1979. doi: 10.1080/01621459.1979.10481621.
  • [28] E. Parzen. Quantile functions, convergence in quantile, and extreme value distribution theory. Technical Report B-3, Statistical Institute, Texas A & M University, College Station, Texas, 1980.
  • [29] M. B. Priestley. Non-Linear and Non-Stationary Time Series Analysis. Academic Press, Inc. London, 1988. ISBN 0-12-564910-X. MR 991969.
  • [30] S. Rachev and L. Rüschendorf. A counterexample to a.s. constructions. Statistics and Probability Letters, 9 (4): 307-309, April 1990. ISSN 0167-7152. doi: 10.1016/0167-7152(90)90137-V. URL http://www.sciencedirect.com/science/article/pii/016771529090137V.
  • [31] S. T. Rachev. The Monge-Kantorovich mass transference problem and its stochastic applications. Theory of Probability and its Applications, 29 (4): 647-676, 1985. doi: 10.1137/1129093.
  • [32] S. T. Rachev. Probability Metrics and the Stability of Stochastic Models. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 1991. ISBN 0-471-92877-1. MR 1105086.
  • [33] S. T. Rachev and L. Rüschendorf. Mass transportation problems. Vol. I, volume 1 of Probability and its Applications (New York). Springer-Verlag, New York, 1998. ISBN 0-387-98350-3. Theory. MR 1619170.
  • [34] S. T. Rachev, L. B. Klebanov, S. V. Stoyanov, and F. J. Fabozzi. The Methods of Distances in the Theory of Probability and Statistics. Springer, New York, 2013. ISBN 978-1-4614-4868-6; 978-1-4614-4869-3. doi: 10.1007/978-1-4614-4869-3. MR 3024835.
  • [35] R. R. Rao. Relations between weak and uniform convergence of measures with applications. The Annals of Mathematical Statistics, 33 (2): 659-680, 1962. ISSN 0003-4851. doi: 10.1214/aoms/1177704588. MR 0137809.
  • [36] T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1998. ISBN 3-540-62772-3. doi: 10.1007/978-3-642-02431-3. MR 1491362.
  • [37] M. Rosenblatt. Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23: 470-472, 1952. ISSN 0003-4851. MR 0049525.
  • [38] L. Rüschendorf. Asymptotic distributions of multivariate rank order statistics. The Annals of Statistics, 4 (5): 912-923, 1976. ISSN 0090-5364. MR 0420794.
  • [39] L. Rüschendorf. Stochastically ordered distributions and monotonicity of the oc-function of sequential probability ratio tests. Math. Operationforsch. Statist., Series Statistics, 12 (3): 327-338, 1981. ISSN 0323-3944. doi: 10.1080/02331888108801593. MR 640553.
  • [40] L. Rüschendorf. The Wasserstein distance and approximation theorems. Z. Wahrsch. Verw. Gebiete, 70 (1): 117-129, 1985. ISSN 0044-3719. doi: 10.1007/BF00532240. MR 795791.
  • [41] L. Rüschendorf. Fréchet bounds and their applications. In G. Dall’Aglio, S. Kotz, and G. Salinetti, editors, Advances in Probability Distributions with Given Marginals: Beyond the Copulas, pages 151-187. Springer Netherlands, Dordrecht, 1991. ISBN 0-7923-1156-6. doi: 10.1007/978-94-011-3466-8. MR 1215942.
  • [42] L. Rüschendorf. Monge-Kantorovich transportation problem and optimal couplings. Jahresbericht der Deutschen Mathematiker-Vereinigung, 109 (3): 113-137, 2007. ISSN 0012-0456. MR 2356041.
  • [43] L. Rüschendorf. On the distributional transform, Sklar’s theorem, and the empirical copula process. Journal of Statistical Planning and Inference, 139 (11): 3921-3927, 2009. ISSN 0378-3758. doi: 10.1016/j.jspi.2009.05.030. MR 2553778.
  • [44] L. Rüschendorf. Mathematical Risk Analysis - Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer, 2013. ISBN 978-3-642-33589-1; 978-3-642-33590-7. MR 3051756.
  • [45] L. Rüschendorf and S. T. Rachev. A characterization of random variables with minimum L2 distance. Journal of Multivariate Analysis, 32 (1): 48-54, 1990. ISSN 0047-259X. doi: 10.1016/0047-259X(90)90070-X. MR 1035606.
  • [46] B. S. W. Schröder. Ordered Sets. Birkhäuser Boston, Inc., Boston, MA, 2003. ISBN 0-8176-4128-9. doi: 10.1007/978-1-4612-0053-6. An introduction. MR 1944415.
  • [47] R. Serfling. Quantile functions for multivariate analysis: approaches and applications. Statistica Neerlandica, 56 (2): 214-232, 2002. ISSN 1467-9574. doi: 10.1111/1467-9574.00195. URL http://dx.doi.org/10.1111/1467-9574.00195.
  • [48] R. Serfling and Y. Zuo. General notion of statistical depth function. The Annals of Statistics, 28 (2): 461-482, 2000. ISSN 0090-5364. doi: 10.1214/aos/1016218226. MR 1790005.
  • [49] R. Serfling and Y. Zuo. Structural properties of and convergence results for contours of sample statistical depth functions. The Annals of Statistics, 28 (2): 483-499, 2000. ISSN 0090-5364. doi: 10.1214/aos/1016218227. MR 1790006.
  • [50] R. Serfling and Y. Zuo. Discussion. The Annals of Statistics, 38 (2): 676-684, 2010. ISSN 0090-5364. doi: 10.1214/09-AOS723B. MR 2604672.
  • [51] A. N. Shiryaev and V. G. Spokoiny. Statistical Experiments and Decisions: Asymptotic Theory, volume 8 of Advanced series on statistical science and applied probability. World Scientific, 2000.
  • [52] G. R. Shorack. Probability for statisticians. Springer Texts in Statistics. Springer-Verlag, New York, 2000. ISBN 0-387-98953-6. MR 1762415.
  • [53] G. R. Shorack and J. A. Wellner. Empirical processes with applications to statistics. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. ISBN 0-471-86725-X. MR 838963.
  • [54] A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris, 8: 229-231, 1959. MR 0125600.
  • [55] A. Sklar. Random variables, joint distribution functions, and copulas. Kybernetika, 9 (6): 449-460, 1973. ISSN 0023-5954. MR 0345164.
  • [56] A. V. Skorokhod. Limit theorems for stochastic processes. Theory of Probability and its Applications, 1: 261-290, 1956. doi: 10.1137/1101022.
  • [57] R. Szekli. Stochastic Ordering and Dependence in Applied Probability, volume 97 of Lecture Notes in Statistics. Springer-Verlag, New York, 1995. ISBN 0-387-94450-8. doi: 10.1007/978-1-4612-2528-7. MR 1329324.
  • [58] H. Thorisson. Coupling, stationarity, and regeneration. Probability and its Applications (New York). Springer-Verlag, New York, 2000. ISBN 0-387-98779-7. doi: 10.1007/978-1-4612-1236-2. MR 1741181.
  • [59] A. Tuero. On the stochastic convergence of representations based on Wasserstein metrics. The Annals of Probability, 21 (1): 72-85, 1993. ISSN 0091-1798. MR 1207216.
  • [60] V. S. Varadarajan. On the convergence of sample probability distributions. Sankhya, 19 (1/2): 23-26, 1958. ISSN 0972-7671. MR 0094839.
  • [61] C. Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, 2003. ISBN 0-8218-3312-X. doi: 10.1007/b12016. MR 1964483.
  • [62] C. Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. ISBN 978-3-540-71049-3. doi: 10.1007/978-3-540-71050-9. Old and new. MR 2459454.
  • [63] D. Williams. Probability with Martingales. Cambridge University Press, Cambridge, 1991. ISBN 0-521-40455-X; 0-521-40605-6. doi: 10.1017/CBO9780511813658. MR 1155402.
  • [64] V. M. Zolotarev. Modern Theory of Summation of Random Variables. Modern Probability and Statistics. VSP, Utrecht, 1997. ISBN 90-6764-270-3. doi: 10.1515/9783110936537. MR 1640024.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-813cb878-3bfc-4ace-bcb1-3ee9c238a643
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.