PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cox processes in system degradation modelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
15th Summer Safety & Reliability Seminars - SSARS 2021, 5-12 September 2021, Ciechocinek, Poland
Języki publikacji
EN
Abstrakty
EN
Many systems are subject to multiple degradation processes, which reduce their capability for fulfilling their functions. Pitting corrosion, which consists of the appearance of different that evolve simultaneously in the system, is a classic example of this multiple degradation. It is assumed that the system fails when the pits are large enough that do not allow the system to perform its function, or, in other words, when the degradation level has exceeded a certain fixed threshold, which indicates whether the system is in a good condition. For a system to work properly, a maintenance is performed on it: periodic inspections, repairs, and replacements of the components. The search of the optimal maintenance strategy is a key challenge since we must bear in mind the different costs associated to each maintenance task and the different stochastic processes influencing the system condition: the arrival processes and the growth processes. In this work, we study a system subject to different degradation processes, in which the arrival of those processes is modelled using Cox processes, which are generalizations of the non-homogeneous Poisson process. Using their properties, the survival function, the expected number of arrivals and the expected intensity are obtained.
Twórcy
  • University of Extremadura, Cáceres, Spain
  • University of Extremadura, Cáceres, Spain
  • University of Extremadura, Cáceres, Spain
Bibliografia
  • Abdel-Hameed, M. 1975. A gamma wear process. IEEE Transactions in Reliability 24(2), 152-153.
  • Alaswad, S. & Xiang, Y. 2017. A review on condition-based maintenance optimization models for stochastically deteriorating system. Reliability Engineering & System Safety 157, 54-63.
  • Bertoin, J. 1996. Lévy processes. Cambridge University Press, Melbourne, New York.
  • Caballé, N. & Castro, I.T. 2017. Analysis of the reliability and the maintenance cost for finite life cycle systems subject to degradation and shocks. Applied Mathematical Modelling 52, 731-746.
  • Caballé, N., Castro, I.T., Pérez, C.J. & Lanza-Gutiérrez, J.M. 2015. A condition-based maintenance of a dependent degradation threshold-shock model in a system with multiple degradation processes. Reliability Engineering & System Safety 134, 89-109.
  • Castro, I.T., Caballé, N. & Pérez, C.J. 2015. A condition-based maintenance for a system subject to multiple degradation processes and external shocks. International Journal of Systems Science 46(9), 1692-1704.
  • Castro, I.T. & Landesa, L. 2019. A dependent complex degrading system with non-periodic inspection times. Computers & Industrial Engineering 133, 241-252.
  • Cha, J.H. & Finkelstein, M. 2017. On Some Shock Models with Poisson and Generalized Poisson Shock Processes. ICSA Book Series in Statistics, 67-79.
  • Cha J.H., Finkelstein M. & Levitin G. 2018. Bivariate preventive maintenance of systems with lifetimes dependent on a random shock process. European Journal of Operational Research 266, 122-143.
  • Chen, J.M., Hawkes, A.G., Scalas, E. & Trinh, M. 2018. Performance of information criteria for selection of Hawkes process models of financial data. Quantitative Finance 18(2), 225-235.
  • Chen, N., Ye Z.S., Xiang Y. & Zhang L. 2015. Condition based maintenance using the inverse Gaussian degradation model. European Journal of Operational Research 243(1), 190-199.
  • Chevallier, J. 2017. Mean-field limit of generalized Hawkes processes. Stochastic Processes and their Applications 127(12), 3870-3912.
  • Cui, L., Hawkes, A. & Yi, H. 2020. An elementary derivation of moments of Hawkes processes. Advances in Applied Probability 52, 102-137.
  • Finkelstein, M., Cha, J.H. & Levitin, G. 2020. A hybrid preventive maintenance model for systems with partially observable degradation. IMA Journal of Management Mathematics 31(3), 345-365.
  • Grandell, J. 1976. Doubly stochastic Poisson processes. Lecture Notes in Mathematics 529, Springer, Berlin.
  • Grandell, J. 1991. Aspects of Risk Theory. Springer, New York.
  • Huynh, K.T., Grall, A. & Bérenguer, C. 2017. Assessment of diagnostic and prognostic condition indices for efficient and robust maintenance decision-making of systems subject to stress corrosion cracking. Reliability Engineering & System Safety 159, 237-254.
  • Lawless, J. & Crowder, M. 2004. Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Analysis 10, 213-227.
  • Lemoine, A.J. & Wenocur, M.L. 1985. On failure modeling. Naval Research Logistics Quarterly 32(3), 497-508.
  • Lemoine, A.J. & Wenocur, M.L. 1986. A note on shot-noise and reliability modeling. Operations Research 34(2), 320-323.
  • Liu, Z., Ma, X., Yang, J. & Zhao, Y. 2014. Reliability modeling for systems with multiple degradation processes using inverse Gaussian process and copulas. Mathematical Problems in Engineering 829597.
  • Möller, J. 2015. Properties of spatial Cox process models. Journal of Statistical Research of Iran 2(1), 1-18.
  • Oakes, D. 1975. The markovian self-exciting process. Journal of Applied Probability 12, 69-77.
  • Pinsky, M. A. & Karlin, S. 2011. An Introduction to Stochastic Modeling, 4th edition, Academic Press Elsevier.
  • Pulcini, G. 2013. Modeling the mileage accumulation process with random effects. Communications in Statistics - Theory and Methods 42(15), 2661-2683.
  • Qiu, Q., Cui L. & Yang, L. 2018. Maintenance policies for energy systems subject to complex failure processes and power purchasing agreement. Computers & Industrial Engineering 119, 193-203.
  • Rodríguez-Picón, L.A., Rodríguez-Picón, A.P., Méndez-González, L.C., Rodríguez-Borbó,n M.I. & Alvarado-Iniesta, A. 2018. Degradation modeling based on gamma process models with random effects. Communications in Statistics - Simulationand Computation 47(6), 1796-1810.
  • Ross, S.M. 2014. Introduction to Probability Models. Elsevier, Rome.
  • Serfozo, R.F. 1990. Point processes. Handbooks in Operations Research and Management Science.Vol 2: Stochastic Models.Heyman D.P. & Sobel M.J. (Eds.), 1-93. North Holland, Amsterdam.
  • Shahraki, A.F., Yadav, O.P. & Liao, H. 2017. A review on degradation modelling and its engineering applications. International Journal of Performability Enginering 13(3), 299-314.
  • Straub, D. 2009. Stochastic modeling of deterioration processes through dynamic bayesian networks. Journal of Engineering Mechanics 135(10), 1089-1099.
  • Teugels, J.L. & Vynckier, P. 1996. The structure distribution in a mixed Poisson process. Journal of Applied Mathematics and Stochastic Analysis 9(4), 489-496.
  • Tijms, H.C. 2013. A First Course in Stochastic Models. John Wiley & Sons Ltd, West Sussex (England).
  • Tsai, C.C., Tseng, S.T. & Balakrishnan, N. 2012. Optimal design for degradation tests based on gamma processes with random effects. IEEE Transactions on Reliability 61(2), 604-613.
  • Wang, Y. & Pham, H. 2012. Modeling the dependent competing risks with multiple degradation processes and random shocks using time-varying copulas. IEEE Transactions on Reliability 61, 13-22.
  • Wu, S. & Castro, I.T. 2020. Maintenance policy for a system with a weighted linear combination of degradation processes. European Journal of Operational Research 280, 124-133.
  • Xiang, Y., Zhu Z., Coit, D.W. & Feng, Q. 2017. Condition-based maintenance under performance-based contracting, Computers & Industrial Engineering 111, 391-402.
  • Yannaros, N. 1988. On Cox processes and gamma renewal processes, Journal of Applied Probability 25, 423-427.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-813a107a-de92-4254-85a0-d05b18ce08ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.