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Abstract  
 

Many systems are subject to multiple degradation processes, which reduce their capability for fulfilling 
their functions. Pitting corrosion, which consists of the appearance of different that evolve simultane-
ously in the system, is a classic example of this multiple degradation. It is assumed that the system fails 
when the pits are large enough that do not allow the system to perform its function, or, in other words, 
when the degradation level has exceeded a certain fixed threshold, which indicates whether the system 
is in a good condition. For a system to work properly, a maintenance is performed on it: periodic in-
spections, repairs, and replacements of the components. The search of the optimal maintenance strategy 
is a key challenge since we must bear in mind the different costs associated to each maintenance task 
and the different stochastic processes influencing the system condition: the arrival processes and the 
growth processes. In this work, we study a system subject to different degradation processes, in which 
the arrival of those processes is modelled using Cox processes, which are generalizations of the non-
homogeneous Poisson process. Using their properties, the survival function, the expected number of 
arrivals and the expected intensity are obtained.  
 
1. Introduction  
 

Some phenomena that occur repeatedly are math-
ematically modeled with a point process. How-
ever, there are different approaches in the study of 
these type of processes. The most common theory 
is the one associated with the renewal processes. 
The study of the time between failures started in 
the 20th century with William Feller and during 
the World War II, when the theory of stochastic 
processes underwent a spectacular development, 
extended to other areas like ecology, astronomy, 
sociology, etc.  
Another usual approach is the count of the number 
of arrivals or events in an interval. Probability the-
ory became more popular thanks to Siméon Denis 

Poisson and the discover of the Poisson distribu-
tion as limit of a binomial distribution.  
The counting problem started with the study of the 
number of storms, blood cells and telephone calls 
in a telephone switchboard. At the same time, 
(Cox, 1955) published an article about point pro-
cesses with different mathematical models, in-
cluding the Cox or doubly stochastically process 
(Grandell, 1976). Its novelty was the stochastic 
nature of the intensity, which was a stochastic pro-
cess itself. This process is useful to model signal 
telecommunications, nerve impulses or image re-
construction. 
Ogata in 1998 used Cox processes to model the 
count of earthquakes in a zone, proposing a new 
algorithm to model these processes with real data 
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(Oakes, 1975). 
Many authors have studied Cox processes from 
different points of view, highlighting Snyder and 
Miller (1991), which studied the evolution of the 
Poisson process to the Cox process, going through 
the compound Poisson process, displaced process, 
etc. 
Systems are often subject to multiple degradation 
processes since they can deteriorate in different 
ways. The simplest example of multiple degrada-
tion is the pitting corrosion process. It consists of 
the appearance of small pits over some metals or 
other surfaces. When a pit starts, its growth will 
depend on the environment characteristics, but it 
has a stochastic nature. Some other examples of 
this multiple degradation can be found in elec-
tronic components or systems subject to fatigue 
cracking. 
Early works on multiple degradation processes as-
sume that there is independence between the dif-
ferent processes. However, this may give a poor 
and simpler model because degradation processes 
use to have influence on the subsequent processes 
and on the system.  
Moreover, it is not probably that all degradation 
processes appear at the same time. They usually 
initiate at random times, for example, following a 
non-homogeneous Poisson process. Their growth 
process can also, of course, be different.  
So, we have a combination of two stochastic pro-
cesses: the initiation process and the growth pro-
cess. 
Dealing with real systems is a key challenge in the 
sense that the scientific community needs to de-
velop suitable methods which include multidisci-
plinary aspects. It depends on the assumptions 
concerning distributions, parameters, or the lim-
ited information available (IFR) that we made and 
requires additional research effort. The decision 
making in the design of a complex system is based 
in industrial practice and risk indicators being rel-
evant. The proactive approaching for the manage-
ment of the lifetime cycle, apart from other new 
research issues (security and safety of the man-
agement process, dependency regarding cost ef-
fective maintenance, networks for improved sys-
tem performance and advanced control and diag-
nostic systems for limiting errors…) have been 
developing by the Industry 4.0 solutions. The sys-
tem modeling here is analyzed from a probabilis-
tic perspective, considering the stochastic pro-
cesses that determine the arrivals and growth of 

new degradation processes. However, we could 
make other assumptions regarding failure distri-
butions, which will be proposed for further stud-
ies. 
The objectives of this work are the following: 
• describe the main concepts of count processes: 

arrival and interarrival times, 
• study the theory of stochastic processes, espe-

cially homogeneous and non-homogeneous 
Poisson processes, 

• characterize the Poisson process and the Cox 
process created from it, 

• simulate some Cox processes using the thin-
ning algorithm programmed with the statistical 
software R, 

• develop mathematical formulas for the ex-
pected number of arrivals, theoretically and us-
ing simulation,  

• give some numerical examples of the mainte-
nance strategy proposed with Cox arrivals. 

The chapter is organized into 7 parts: this Intro-
duction as Section 1, Sections 2–6 and Conclusion 
as Section 7. Some general results on stochastic 
processes are described in Section 2. Section 3 
deals with Cox processes and the shot noise pro-
cess. Section 4 is devoted to the maintenance pol-
icy and Section 5 presents the objective cost func-
tion and its optimization with a numerical exam-
ple. 
Finally, the evaluation of the results is discussed 
in Sections 6 and 7. Wider applications in the field 
considered in this chapter is suggested in conclu-
sions.  
 
2. Theory of stochastic processes  
 

The theory of stochastic processes provides an an-
alytical framework for modelling the impact of 
some degradation processes. In maintenance, the 
most useful processes are those which describe 
continuous deterioration, such the gamma pro-
cess, and the Poisson process, which is used for 
modelling the arrivals of new degradation pro-
cesses at the system. We are going to study a gen-
eralization of the Poisson process, the Cox pro-
cess, to analyze the intensity of the new arrivals at 
the system.  
 
2.1. Counting processes  
 

A counting process    is a collection of non-neg-
ative, integer-valued random variables such that if 0 <  <  , then   <    . In other words,    
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counts the number of events up to time  : 
   = ∑     , (1) 
 
where 1 is the indicator function which takes 
value 1 when the condition is true and 0 otherwise, 
and   ,  = 1, 2, …. are the arrival times of the 
events at the system.  
Supposing   = 0,    is piecewise constant and 
has jumps size of 1.  
 
2.2. Homogeneous and non-homogeneous 

Poisson processes 
 

A Poisson process is a special type of counting 
process. It is used to model the arrival of events 
over a continuous interval of time, for example, 
arrivals of text messages on the phone, accidents 
occurring in the highway or number of births in a 
hospital. Also, it might be a good model for earth-
quakes and natural disasters. 
In general, it is widely used to count the occur-
rences of certain events that appear to happen at a 
certain rate. 
Definition 1. A counting process (  )  is a Pois-
son process with parameter λ that fulfills the fol-
lowing properties: 
1.   = 0. 
2. For all  > 0,    has a Poisson distribution 

with parameter   .  
3. For all  ,  > 0,     −     has the same distri-

bution as   .  
4. For all 0 <  <  <  <  ,   −     and   −     are independent random variables. 
Property (3) given in Definition 1 says that the 
distribution of the number of events in an interval 
only depends on the length of the interval, and 
property (4) given in Definition 1 means that the 
number of events on disjoint intervals are inde-
pendent random intervals. 
To characterize the Poisson process, we are going 
to focus on the time between the different events 
instead of the number of events that occur in a 
fixed interval of time, which is the usual interpre-
tation. With that, we can describe the probabilistic 
behavior of a stochastic process.  
An important concept in Poisson processes is the 
difference between arrival and interarrival times.  
Let   denote the time of the first arrival. With 
that,  >   if and only if there are no events in the 
interval [0,  ]. Therefore, the probability of ob-
serving an event at time  >   is: 

 ( >  ) =  (  = 0) = exp(−  ). 
 
Computing the probability of observing an inter-
arrival time longer than a fixed time length t, we 
have: 
  ( ) =  ( <  ) = 1 − exp(−  ). 
 
In fact,   has an exponential distribution with pa-
rameter λ. 
Definition 2 (Memoryless property). A random 
variable is said to be memoryless if for all   ,  > 0 then,  
  ( >  +  | >  ) =  ( >  ). 
 
Lemma 1. The exponential distribution (which ap-
pears in a Poisson process) has the memoryless 
property. 
This distribution plays an important role in Pois-
son processes. Since interarrival times are inde-
pendent and identically distributed, as we have 
seen in properties (3) and (4), the previous distri-
bution is true for all interarrival times. 
In general, we call   ,   ,… the arrival times of 
the process, and   ,  ,… the interarrival times, 
where: 
   =   −      , 
 
that is,    is the time between the ( − 1) −  ℎ 
and the  −  ℎ arrival. 
The interarrival times are independent and each of 
them follow an exponential distribution with pa-
rameter λ. 
The previous model is called the homogeneous 
Poisson process. However, describing more com-
plex processes could be tedious, so we need able 
to vary the event intensity in time, that is, the rate 
of the event arrivals is a function of time,   =  ( ). Using that intensity, we have the non-
homogeneous Poisson process. The main differ-
ence with the homogeneous Poisson process is 
property (2) given in Definition 1. In this case,    
has a Poisson distribution with mean: 
  (  ) = ∫  ( )    . (2) 
 
A Poisson process can be completely character-
ized by its conditional intensity function. 
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2.3. Simulation algorithm for the Poisson  
processes 

 

Lemma 2. Let   ,  ,… be the arrival times of a 
Poisson process with parameter  . Conditioning 
on   =  , the distribution of (  ,   , …) is the dis-
tribution of   independent and identically uniform 
random variables on [0,  ].  
The methods for simulating the arrival times of a 
homogeneous Poisson process and a non-homo-
geneous Poisson process are shown below. 
Simulation procedure (homogeneous): 
• simulate the number of arrivals   for a Poisson 

distribution with parameter    , 
• generate   uniform random variables on (0,  ), 
• put the variables in increasing order. This vec-

tor is the vector of arrival times of a Poisson 
process.  

Simulation procedure (non-homogeneous): 
• simulate the number of arrivals   for a Poisson 

distribution with parameter  
  ( ) = ∫  ( )    , 
 

• generate   uniform random variables on (0,  ), 
with density  / ( ), 

• sort the previous variables as 
  ( ) <  ( )  <  ( ) < ⋯  
 
• for every  , set   =  ( ). 
 
3. Cox processes  
 

Definition 3. Let   be a random measure on  .  
A point process  (−) on   is a Cox process di-
rected by   when, conditioning on  , the realiza-
tions of  (−)are the realizations of a Poisson pro-
cess  (−| ) on X with parameter measure  .  
A Cox process (or a doubly stochastic Poisson 
process) is a generalization of a Poisson process, 
where the intensity is itself a stochastic process. 
An important example of a Cox process is the 
Shot-noise or trigger process. 
 
3.1. Shot noise process 
 

We assume here that the arrival intensities of the 
degradation processes follow a Cox process 
driven by a shot-noise process. This means that 
the system is subject to shots according to a Pois-
son process with a deterministic rate  . In addi-
tion, the shot-induced stress is additive and decays 

with time according to a classical exponential 
function.  
The stochastic intensity of the shot-noise process 
is given by: 
  ∗( ) =   + ∑ exp − ( −   )  ( )   , (3) 
 
where  ( ) is the counting process associated 
with the homogeneous Poisson process,    are the 
arrival times and   ,  > 0. 
Given the intensity, the expectation can be calcu-
lated by conditioning on  ( ) =   and using sim-
ulations of a random variable U with uniform dis-
tribution in (0,  ) as: 
    ∗( ) =   +   ∑ exp − ( −   )  ( )      =   +   (1 − exp(−   )). (4) 
 
With   being the rate parameter of the initial Pois-
son process. 
Lemma 2. Let  ∗( ) be the random intensity func-
tion of the counting process  ∗( ). Then, 
  [ ( )] = ∫  [ ∗( )]    . (5) 
 
Proof. This is a general result for stochastic pro-
cess and the proof can be found in (Bertoin, 1996) 
and (Pinsky & Karlin, 2011). 
Using Lemma 2, the expected number of degrada-
tion processes at time   is given by: 
  [ ∗( )] = ∫  [ ∗( )]      =    +    +    (exp(−  ) − 1). (6) 
 
Finally, the survival function of the shot-noise 
process is next computed. Let    be the instant at 
which, for the first time, the deterioration level of 
a degradation process exceeds the corrective or 
failure threshold L,  
   = min{  },   = 1,2, … . 
 
The survival function of this variable is:  
         ( ) =  (  ( ) = 0) =   exp   −∫   ( )         =   exp   −∫  ∗   ( −  )       . (7) 
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4. System maintenance 
 

We consider a system subject to multiple degra-
dation processes. That is, defects or “failures” ap-
pear at random times instead of at the same time.  
The arrival intensities of the processes follow a 
Cox process with stochastic intensity depending 
on the time.  
 
4.1. General assumptions of the model 
 

Supposing that multiple degradation processes ar-
rive to a system, we are in position to study the 
stochastic process that describes the deterioration 
growth of the system. A gamma process is used to 
model this growth, due to its mathematical prop-
erties.  
The gamma process is considered one of the most 
appropriated processes for modelling the damage 
produced by cumulative deterioration of systems. 
It has independent and non-negative gamma in-
crements with identical scale parameter. Abdel-
Hammed (Abdel-Hammed, 1975) proposed it for 
modelling random deterioration in time. After 
that, it has been widely used in the maintenance 
field and to model different real situations related 
to making decisions in industry, railway tracks, 
breakwaters, steel pressure levels, rock dumping 
etc. 
The markovian property allows us to simplify the 
analytic development of these processes. Expo-
nential distribution and gamma processes are ap-
propriate candidates to model the behaviour of a 
system. Focusing on the degrading, other stochas-
tic processes maintaining the markovian property 
could be chosen and the development of the kernel 
would be similar. 
Definition 4 (Gamma process). A gamma process 
with shape  ( ) > 0 function and scale parameter  > 0 is a continuous stochastic process with the 
following properties: 
1.  (0) = 0 with probability 1. 2.  ( ) −  ( ) follows a gamma distribution 

with parameters   ( ) −  ( )  and  . 
3.  ( ) has independent increments.  
Its probability density function is given by:  
   , =    ( )     exp(−  ), 
 
where  
 Γ( ) = ∫       exp(− )  .  

The random variable   ( ) is known as the first 
hitting time distribution and has the following cu-
mulative distribution function: 
    ( ) =  ( ( ) ≥  ) = ∫    , ( )   (  ,  ) (  )   , 
 
for  > 0, where    ,  is given by Definition 4 and  
 Γ( ,  ) = ∫     exp(− )    ,  
 
denotes the incomplete gamma function. 
This distribution function indicates the time when 
the gamma deterioration process exceeds a correc-
tive threshold, denoted by the variable L.  
 
4.2. Maintenance strategy 
 

A self-announcing failure policy means that, 
whenever a component or a system fails, a warn-
ing alarm is triggered. Despite this failure, if pos-
sible, the system continues working until the 
maintenance team arrival. To avoid additional 
costs, we assume that the degradation level of a 
system cannot be directly observed, so that the 
system is periodically inspected each certain time. 
This is called periodical monitoring, and it is less 
expensive than a continuous monitoring of the 
system using sensors. At each periodic inspection, 
the level of deterioration of the system is observed 
with the naked eye, having previously established 
certain damage thresholds. If this level exceeds 
any of them, the corresponding maintenance of 
the system is carried out, which consists of being 
completely replaced, leading to a level 0 of degra-
dation. 
These periodic inspections will describe the exact 
state of the system in those times. 
To sum up, we have the following assumptions on 
the system. 
• The system is inspected each T time units. In 

the inspections, the deterioration level of the 
system is checked. We have different scenar-
ios: 
− if the degradation level of one of the degra-

dation processes exceeds the preventive 
threshold, but the system is not failed, a 
preventive replacement of the correspond-
ing component is performed, 

− if the degradation level of at least one deg-
radation process exceeds the corrective 
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threshold, that is, the system is failed, then 
a corrective replacement of the correspond-
ing component is performed, 

− the system is left as it is if there is no deg-
radation process that exceeds the preven-
tive threshold. 

• To study the maintenance strategy, a sequence 
of costs is imposed to the different mainte-
nance actions: 
− corrective replacement cost:    monetary 

units, 
− preventive replacement cost:    monetary 

units, 
− inspection cost:    monetary unit, 
− downtime cost:    monetary units.  

Obviously, the cost due to corrective replace-
ments is always greater than the cost due to pre-
ventive replacements. 
 
5. The objective function 
 

Next, the objective cost function is shown in this 
section. The corresponding survival function is 
computed both theoretically and with simulations. 
On the other hand, the expectation of the stochas-
tic intensity of the process and the expected num-
ber of arrivals in a period are also calculated.  
From a practical point of view, the deterioration 
of the system may incur high costs, so that is way 
maintenance plays an important role in most com-
panies.  
We consider a shot-noise process, which is a par-
ticular Cox process. By (Caballé et al., 2015) and 
(Castro et al., 2015), the expected cost rate for this 
maintenance model is given by: 
  ( , ) =  [ ] [ ] 
 
where  [ ] is the expected cost in a replacement 
cycle and  [ ] is the expected time to a replace-
ment. Therefore, developing that expression, we 
have: 

  ( , ) =    ∑   (  )       ∑   (  )     [ ]   

+     [  ] ∑    (   )       [ ] , (8) 

where   ,  ,   and    are the corresponding 
costs due to a maintenance action and   (  ),  (  ) and  [  ] represent the probabil-
ity of a corrective replacement in a time instant   , the probability of a preventive replacement in    and the expected number of inspections in the 
system, respectively. 
 
5.1. A numerical example 
 

We are studying here a realization of a shot-noise 
Cox process and how to find and evaluate the cost 
of the maintenance strategy described previously. 
Consider the sequence of values shown in Table 1 
for the different maintenance actions. The values 
for the gamma deterioration process and the pa-
rameters of the shot-noise Cox process are also 
given in Table 2. 
 
Table 1. Values for the different costs of the mainte-
nance tasks 
 

Cost of the maintenance task Value 

Corrective replacement    100 monetary units 

Preventive replacement    50 monetary units 

Cost of a periodic inspection    30 monetary units 

Cost due to downtimes of  
the system    

20 monetary units 
per time unit 

 
Table 2. Parameter values for the gamma process and 
the Cox process 
 

Parameters for the gamma  
process and the Cox process Value 

Gamma shape parameter   1.5 

Gamma scale parameter   2 

Parameter    1 

Parameter   0.5 

Poisson process rate   1.5 

Failure threshold of the gamma  
process   8 

 
A cost due to shut down is included, which gener-
ates economic losses, since the system is no work-
ing during this certain period. 
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The costs are specific for this numerical example, 
and logical in the sense that the cost due to correc-
tive replacement is higher than the cost due to pre-
ventive replacement. On the other hand, the cost 
due to periodic inspection is also lower than the 
cost due to a replacement (corrective or not).  
The total expected cost for this maintenance strat-
egy is 35.7049 monetary units per unit time, with 
optimal values for T = 6.36 and M = 6.11. All the 
simulations were made with the statistical soft-
ware R and using a Genetic Algorithm combined 
with Monte-Carlo method. 
The parameters for the gamma process shown in 
Table 2, especially the value of the shape param-
eter, mean that the process is increasing failure 
rate (IFR), that is, the failure rate increases with 
time and the probability of a failure to happen is 
higher. This fact encourages us to employ a pre-
ventive maintenance policy.  
Moreover, the survival function for a realization 
of a shot-Cox noise process until 50 units of time 
is represented in Figure 1. It has the usual form: 
initially there is a high probability of survival, but 
this decreases dramatically after 15 units of time. 
 

 
 
Figure 1. Survival probability until t = 50. 
 
Figure 2 shows a representation of the steadily in-
creasing intensity function of the shot Cox-noise 
process. Note that it stabilizes at value 4 approxi-
mately. The parameter of the shot is   = 0.5, so that the growth rate is not as fast. 
As expected, since the degradation processes ini-
tiation times follow a shot-Cox noise process, the 

intensity function of the process is always increas-
ing, and the frequency of the arrivals is higher as 
time goes by.  
 

 
 
Figure 2. Intensity of the shot noise until t = 50. 
 
Figure 3 shows the expected number of arrivals of 
the shot-Cox noise process until 50 units of time. 
It is observed to be linear over time, the 
deterioration processes arrive at the system 
following a lineal relation. 
 

 
 
Figure 3. Expected number of arrivals until t = 50. 
 
A shot-Cox noise arrival process until time t = 10 
with the same previous parameters is represented 
in Figure 4. 
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Figure 4. Number of arrivals for t = 10. 
 
A brief sensitivity analysis of the shape and scale 
parameters’ choice of the gamma process is per-
formed to study their influence on the model. In 
Table 3, the expected cost for each pair of values 
is calculated, always in monetary units per unit 
time. It is observed that, as α increases, the ex-
pected total cost of maintenance also increases, 
due to the higher frequency of failures. The same 
is true as β increases. However, it can be seen that 
the highest cost is around β = 1.45, compared to 
the rest of the values taken. Cost varies little at 
very close values. The differences are found as we 
move away from the initial value of the chosen 
parameter. 
 
Table 3. Sensitivity analysis of the gamma process 
parameters 
 

β 
α 1 1.15 1.3 1.45 1.6 

1 18.35 20.21 21.05 25.12 20.34 
1.15 21.27 23.56 23.14 27.59 23.51 
1.3 23.45 26.02 26.84 31.77 24.48 

1.45 25.98 28.94 27.44 33.98 25.11 
1.6 27.12 30.46 30.95 38.24 29.41 

 
6. Limitations of the work 
 

The main limitation of the work is the lack of ap-
plication of the model to a real data set. An at-
tempt has been made to use parameters as close as 
possible to a hypothetical model in real life, so 
that we have a model with increasing failure rate, 

continuous degradation, and periodic inspections 
of the state of the system. 
Regarding the frequency of inspections or the 
continuous monitoring, we have chosen periodic 
inspections for their simplicity and low cost, in or-
der not to complicate the model from a probabil-
istic point of view, knowing that nowadays we 
have much more sophisticated mechanisms to 
carry them out.  
The technology available, for example, in piping 
and electrical systems, information technology 
systems (IT), and, in general, operational technol-
ogy including industrial automation and control 
systems (IACS), is much more useful for online 
diagnostics.  
 
7. Conclusion 
 

A model combining arrivals and growth of sto-
chastic processes is explained in this work. The 
growth is modelled through the well-known 
gamma deterioration process, while the arrivals of 
new processes follow a shot-Cox noise process, 
which is the main novelty. The shot noise process 
is described in detail and a numerical example us-
ing it is provided. Optimizing the maintenance 
strategy, that is, finding the optimal values for the 
time between inspections and the preventive 
threshold, we can develop a useful model for min-
imizing the costs of a system maintenance.  
Regarding to the obtained values, we are in posi-
tion to say that the time between inspections in a 
model with our parameters should be approxi-
mately 6.36 units of time, and the preventive 
threshold should be set at 6.11. This model is suit-
able to represent the shocks in a system produced 
by external agents: climate, shocks, deterioration 
etc. Each shock increases the intensity of the pro-
cess, so they will be more and more frequent. This 
is the main novelty of the shot noise process, its 
continuously increasing intensity, which will pro-
duce a greater number of shocks. 
Future work is focus on study some self-exciting 
processes in maintenance theory. They are point 
processes in which the arrival of an event causes 
the intensity function to increase. The first self-
exciting process was proposed by (Hawkes, 
1971). In that, the intensity function depends on 
the previous events, not on another external pro-
cess (the Poisson process), as is the case in shot 
noise. It is defined with the following stochastic 
intensity function: 
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 ∗( ) =  + ∫  ( −  )  ( )  . 
 
For some  > 0 and  : (0,∞) → [0,∞) which are 
called the background intensity and the excitation 
function, respectively. If  = 0, we have the triv-
ial case of a homogeneous Poisson process. 
In these self-exciting processes, the Ogata-Oakes 
algorithm (Oakes, 1975) will be used for their 
simulation.  
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