Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Water demand forecasting in water supply systems is one of the basic strategic management tasks of water supplying companies. This is done using specially designed water consumption models which generate data necessary for planning operational activities. A high number of water demand forecasting methods proposed in the literature points to the complexity and significance of the problem for current operation of water supplying companies. However, it must be observed that no universal method applicable to any water supply system has been developed so far. In addition to this, there is no method which could be considered referential relative to other methods. For this reason, it is necessary to continue the research on forecasting methods enabling effective forecasts based on suitably selected sets of input quantities. This paper proposes a solution for water consumption forecasting in a water supply system, wherein hourly water consumption is determined by trend analysis and harmonic analysis. Trend analysis consists in estimating parameters of models for individual phases of a cycle, while harmonic analysis is based on the assumption that a time series consists of sine and cosine waves with different frequencies known as harmonics. In addition, relationships between structural parameters of individuals harmonics and ambient temperature are investigated using the least squares method.
Czasopismo
Rocznik
Tom
Strony
140--148
Opis fizyczny
Bibliogr. 43 poz., tab., wykr.
Twórcy
autor
- Lublin University of Technology, Faculty of Management, Department of Quantitative Methods in Management, Nadbystrzycka 38D, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Faculty of Environmental Engineering, Department of Water Supply and Wastewater Disposal, Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Faculty of Environmental Engineering, Department of Water Supply and Wastewater Disposal, Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- [1] S. Zhou, T.A. McMahon, A. Walton, J. Lewis, Forecasting operational demand for an urban water supply zone, Journal of Hydrology 259 (1–4) (2002) 189–202.
- [2] T.G. Mamo, J. Ilan, S. Isam, Urban water demand forecasting using the stochastic nature of short term historical water demand and supply pattern, Journal of Water Resource and Hydraulic Engineering 2 (2013) 92–103.
- [3] C.M. Fontanazza, V. Notaro, V. Puleo, G. Freni, Multivariate statistical analysis for water demand modeling, Procedia Engineering 89 (2014) 901–908.
- [4] M. Tiwari, J. Adamowski, Medium term urban water demand forecasting with limited data using an ensemble wavelet-bootstrap machine-learning approach, Journal of Water Resources Planning and Management 141 (2) (2015) 04014053.
- [5] M. Iwanek, B. Kowalska, E. Hawryluk, K. Kondraciuk, Distance and time of water effluence on soil surface after failure of buried water pipe. Laboratory investigations and statistical analysis, Eksploatacja i Niezawodnosc (Maintenance and Reliability), 18 (2) (2016) 278–284. , http://dx.doi.org/10.17531/ ein.2016.2.16.
- [6] R. Klempous, J. Kotowski, J. Nikodem, J. Ułasiewicz, Optimization algorithms of operative control in water distribution systems, Journal of Computational and Applied Mathematics 84 (1) (1997) 81–99.
- [7] F. Odan, L. Reis, Hybrid water demand forecasting model associating artificial neural network with Fourier series, Journal of Water Resources Planning and Management 138 (3) (2012) 245–256.
- [8] A. Loska, W. Moczulski, R. Wyczółkowski, A. Dąbrowski, Integrated system of control and management of exploitation of water supply system, Diagnostyka 17 (1) (2016) 65–74.
- [9] L.A. House-Peters, H. Chang, Urban water demand modeling. Review of concepts, methods, and organizing principles, Water Resources Research 47 (2011) W05401.
- [10] M. Bakker, K. Ven Schagen, J. Timmer, Flow control by prediction of water demand, Journal of Water Supply: Research and Technology 52 (2003) 417–424.
- [11] M. Herrera, L. Torgo, J. Izquierdo, R. Perez-Garcia, Predictive models for forecasting hourly urban water demand, Journal of Hydrology 387 (1–2) (2010) 141–150.
- [12] Z. Siwoń, W. Cieżak, J. Cieżak, Stochastic models of water demand in a chosen water-supply system, Ochrona Środowiska 27 (2005) 7–13.
- [13] M. Bakker, J.H.G. Vreeburg, L.J. Palmen, V. Sperber, G. Bakker, L.C. Rietveld, Better water quality and higher energy efficiency by using model predictive flow control at water supply system, Journal of Water Supply: Research and Technology – AQUA 62 (2013) 1–13.
- [14] J. Adamowski, H.F. Chan, S.O. Prasher, B. Ozga-Zielinski, A. Sliusarieva, Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban demand forecasting in Montreal, Canada, Water Resources Research 48 (1) (2012) W01528.
- [15] J. Boguadis, K. Adamowski, R. Diduch, Short-term municipal water demand forecasting, Hydrological Processes 19 (1) (2005) 137–148.
- [16] A. Jain, A. Varshney, U. Joshi, Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks, Water Resources Management 15 (5) (2001) 299– 321.
- [17] S. Behboudian, M. Tabesh, M. Falahnezhad, F.H. Ghavanini, A long-term prediction of domestic water demand using preprocessing in artificial neural network, Journal of Water Supply: Research and Technology 63 (1) (2014) 31–42.
- [18] G. Zhang, An investigation of neural networks for linear time-series forecasting, Computers and Operations Research 28 (12) (2001) 1183–1202.
- [19] J. Alhumoud, Freshwater consumption in Kuwait; analysis and forecasting, Journal of Water Supply: Research and Technology – AQUA 57 4 (2008) 279–288.
- [20] T. Hughes, Peak period design standards for small western U. S., Water Supply 16 (4) (1980) 661–667.
- [21] D. Maidment, S. Miaou, M. Crawford, Transfer function models of daily urban water use, Water Resources Research 21 (4) (1985) 425–432.
- [22] S. Zhou, T.A. McMahon, A. Walton, J. Lewis, Forecasting daily urban water demand: a case study of Melbourne, Journal of Hydrology 236 (3–4) (2000) 153–164.
- [23] O. Voitcu, Y.S. Wong, On the construction of a nonlinear recursive predictor, Journal of Computational and Applied Mathematics 190 (1) (2006) 393–407.
- [24] C. Bunett, R.A. Stewart, C.D. Beal, ANN-based residential water end-use demand forecasting model, Expert Systems and Applications 40 (4) (2013) 1014–1023.
- [25] P. Cutore, A. Campisano, Z. Kapelan, C. Modica, D. Savic, Probabilistic prediction of urban water consumption using the SCEM-UA algorithm, Urban Water Journal 5 (2) (2008) 125– 132.
- [26] M. Nasseri, A. Moeini, M. Tabesh, Forecasting monthly urban water demand using extended Kalman filter and genetic programming, Expert Systems and Applications 38 (6) (2011) 7387–7395.
- [27] C. Benetti, R.A. Stewart, C.D. Beal, ANN based residential water end-use demand forecasting model, Expert Systems and Applications 40 (4) (2013) 1014–1023.
- [28] A. Loska, Scenario modeling exploitation decision-making process in technical network systems, Eksploatacja i Niezawodnosc – Maintenance and Reliability 19 (2) (2017) 268–278. , http://dx.doi.org/10.17531/ein.2017.2.15.
- [29] I.S. Msiza, F.V. Nelvamondo, T. Marwala, Artificial neural networks and support vector machines for water demand time series forecasting, in: IEEE International Conference on System, Man and Cybernetics, IEEE, 2007 638–643.
- [30] M. Trzęsiok, Symulacyjna ocena jakości zagregowanych modeli zbudowanych metodą wektorów nośnych. W: Zastosowania metod matematycznych w ekonomii i zarządzaniu, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, Katowice, 2013.
- [31] I. Banicescu, R.L. Cariño, J.I. Harvill, J.P. Lestrade, Investigating asymptotic properties of vector nonlinear time series models, Journal of Computational and Applied Mathematics 236 (3) (2011) 411–421.
- [32] C.L.Z. Tu-Qiao, Hourly water demand forecast model based on Bayesian least squares support vector machine, Journal of Tianjin University 9 (2006) 005.
- [33] B.M. Brentan, E. Luvizotto Jr., M. Herrera, J. Izquierdo, R. Perez-Garcia, Hybrid regression model for near teal-time urban water demand forecasting, Journal of Computational and Applied Mathematics (2016), http://dx.doi.org/10.1016/j. cam.2016.02.009 (in press).
- [34] M. Romano, Z. Kapelan, Adaptive water demand forecasting for near real-time management of smart water distribution systems, Environmental Modelling and Software 60 (2014) 265–276.
- [35] C. Qi, N. Chang, System dynamics modeling for municipal water demand estimation in the urban region under uncertain economic impacts, Journal of Environment Management 92 (2011) 1628–1641.
- [36] B. Hazen, C.H. Boone, J. Ezell, L.A. Jones-Farmer, Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications, International Journal of Production Economics 154 (4) (2014) 72–80.
- [37] E. Kosicka, E. Kozłowski, D. Mazurkiewicz, The use of stationary tests for analysis of monitored residual processes, Eksploatacja i Niezawodnosc (Maintenance and Reliability), 17 (4) (2015) 604–609. , http://dx.doi.org/10.17531/ ein.2015.4.17.
- [38] D. Mazurkiewicz, Computer-aided maintenance and reliability management systems for conveyor belts, Eksploatacja i Niezawodnosc (Maintenance and reliability), 16 (3) (2014) 377–382.
- [39] E. Kozłowski, Analiza i identyfikacja szeregów czasowych, Wyd. Politechnika Lubelska, Lublin, 2015.
- [40] A. Zeliaś, B. Pawełek, S. Wanat, Prognozowanie ekonomiczne, Teoria, przykłady, zadania, PWN, Warszawa, 2004.
- [41] G.E.P. Box, G.M. Jenkins, Analiza szeregów czasowych, PWN, Warszawa, 1983.
- [42] G.C. Chow, Ekonometria, PWN, Warszawa, 1995.
- [43] J.D. Hamilton, Time Series Analysis, Princeton University Press, Princeton, 1994.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-813953ae-4ed1-424c-88b0-d9ceff1b2dfa