PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ichnofossil assemblages and palaeosols of the Upper Triassic Chinle Formation, south-eastern Utah (USA) : Implications for depositional controls and palaeoclimate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Upper Triassic Chinle Formation in the Stevens Canyon area in south-eastern Utah represents fluvial, palustrine, and lacustrine strata deposited in a continental back-arc basin on the western edge of Pangea. Previous investigations interpreted a megamonsoonal climate with increasing aridity for the Colorado Plateau towards the end of the Triassic. In this study, we systematically integrate ichnological and pedological features of the Chinle Formation into ichnopedofacies to interpret palaeoenvironmental and palaeoclimatic variations in the north-eastern part of the Chinle Basin. Seventeen ichnofossil morphotypes and six palaeosol orders are combined into twelve ichnopedofacies, whose development was controlled by autocyclic and allocyclic processes and hydrology. Ichnopedofacies are used to estimate palaeoprecipitation in conjunction with appropriate modern analogue latitudinal and geographic settings. In the north-east Chinle Basin, annual precipitation was -1100-1300 mm in the Petrified Forest Member. Precipitation levels were >1300 mm/yr at the base of the lower Owl Rock Member, decreased to -700-1100 mm/yr, and then to -400-700 mm/yr. Two drying upward cycles from -1100 mm/yr to -700 mm/yr occurred in the middle and upper part of the Owl Rock Member. In the overlying Church Rock Member, precipitation decreased from -400 mm/yr at the base of the unit to -25-325 mm/yr at the end of Chinle Formation deposition. Ichnopedofacies indicate monsoonal conditions persisted until the end of the Triassic with decreasing precipitation that resulted from the northward migration of Pangea. Ichnopedofacies in the northeast Chinle Basin indicate both long-term drying of climate and short-term, wet-dry fluctuations.
Rocznik
Strony
127-- 162
Opis fizyczny
Bibliogr. 145 poz., rys., tab., wykr.
Twórcy
  • Department of Geology, University of Kansas, 1475 Jayhawk Blvd., Lawrence, Kansas, 66045, USA
  • Department of Geology, University of Kansas, 1475 Jayhawk Blvd., Lawrence, Kansas, 66045, USA
Bibliografia
  • 1. Abell, P. I., Awramik, S. M., Osborne, R. H. & Tomellini, S., 1982. Plio-Pleistocene lacustrine Stromatolites from Lake Turkana, Kenya: Morphology, stratigraphy, and stable isotopes. Sedimentary Geology, 32: 1-26.
  • 2. Aber, J. D. & Melillo, J.M., 1991. Terrestrial Ecosystems. Saunders, Philadelphia, PA, 429 pp.
  • 3. Alexander, J. & Leeder, M. R., 1987. Active tectonic controls in alluvial architecture. In: Ethridge, F. G., Flores, R. M. & Harvey, M. D. (eds), Recent Developments in Fluvial Sedimentology. SEPM Special Publication, 39: 243-252.
  • 4. Allen, J. R. L., 1970. Studies in fluviatile sedimentation: A comparison of fining-upwards cyclothems, with special references to coarse-member composition and interpretation. Journal of Sedimentary Petrology, 40: 298-323.
  • 5. Alonso-Zara, A. M., Genise, J. F. & Verde, M., 2014. Palaeoenvironments and ichnotaxonomy of insect trace fossils in continental mudflat deposits of the Miocene Calatayud-Daroca Basin, Zaragoza, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 414: 342-351.
  • 6. Amit, R., Enzel, Y, Grodek, T., Crouvi, O., Porat, N. & Ayalon, A., 2010. The role of rare rainstorms in the formation of calcic soil horizons on alluvial surfaces in extreme deserts. Quaternary Research, 74: 177-187.
  • 7. Arenas, C., Cabrera, L. & Ramos, E., 2007. Sedimentology of tufa facies and continental microbialites from the Palaeogene of Mallorca Island (Spain). Sedimentary Geology, 197: 1-27.
  • 8. Ash, S. R. & Hasiotis, S. T., 2013. New occurrences of the controversial Late Triassic plant fossil Sanmiguelia Brown and associated ichnofossils in the Chile Formation of Arizona and Utah, USA. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 268: 65-82.
  • 9. Atchley, S. C., Nordt, L. C., Dworkin, S. I., Ramezani, J., Parker, W. G., Ash, S. R. & Bowring, S. A., 2013. A linkage among Pangean tectonism, cyclic alluviation, climate change, and biologic turnover in the Late Triassic: The record from the Chinle Formation, southwestern United States. Journal of Sedimentary Research, 83: 1147-1161.
  • 10. Bazard, D. R. & Butler, R. F, 1991. Paleomagnetism of the Chinle and Kayenta Formations, New Mexico and Arizona. Journal of Geophysical Research, 96: 9847-9871.
  • 11. Beerbower, J. R., 1964. Cyclothems and cyclic depositional mechanisms in alluvial plain sedimentation. In: Merriam, D. F. (ed.), Symposium on Cyclic Sedimentation: State Geological Survey of Kansas Bulletin, 2: 31-42.
  • 12. Birkeland, P. W., 1999. Soils and Geomorphology, Third Edition. Oxford University Press, New York, 430 pp.
  • 13. Blakey, R. C., 1989. Triassic and Jurassic geology of the southern Colorado Plateau. In: Jenny, J. P. & Reynolds, S. J. (eds), Geologic Evolution of Arizona. Geological Society Digest, 17: 369-396, Tucson, Arizona.
  • 14. Blakey, R. C. & Gubitosa, R., 1983. Late Triassic palaeogeography and depositional history of the Chinle Fm, southern Utah and northern Arizona. In: Reynolds, M. W. & Dolly, E. D. (eds), Mesozoic palaeogeography of the west-central United States, Rocky Mountain Paleogeography Symposium 2. The Rocky Mountain Section, SEPM, Denver, pp. 57-76.
  • 15. Blakey, R. C. & Gubitosa, R., 1984. Controls of sandstone body geometry and architecture in the Chinle Formation (Upper Triassic), Colorado Plateau. Sedimentary Geology, 38: 51-86.
  • 16. Bohacs, K., Hasiotis, S. T., & Demko, T. M., 2007. Continental ichnofossils of the Green River and Wasatch Formations, Eocene, Wyoming: a preliminary survey, proposed relation to lake-basin types, and application to integrated paleoenvironmental interpretation. The Mountain Geologist, 44(2): 79-108.
  • 17. Bown, T. M. & Kraus, M. J., 1987. Integration of channel and floodplain suites, I. Developmental sequence and lateral relations of alluvial palaeosols. Journal of Sedimentary Petrology, 57: 587-601.
  • 18. Bown, T. M. & Kraus, M. J., 1993a. Time-stratigraphic reconstruction and integration of palaeopedologic, sedimentologic, and biotic events (Willwood Formation, Lower Eocene, northwest Wyoming, U.S.A.). Palaios, 8: 66-80.
  • 19. Bown, T. M. & Kraus, M. J., 1993b. Soils, time, and primate palaeoenvironments. Evolutionary Anthropology, 2: 11-21.
  • 20. Brewer, R., 1976. Fabric and Mineral Analysis of Soils, 3rd Edition. Kreiger, New York, 470 pp.
  • 21. Bridge, J. S., 1984. Large-scale facies sequences in alluvial overbank environments. Journal of Sedimentary Petrology, 54: 583-588.
  • 22. Bridge, J. S. & Leeder, M. R., 1979. A simulation model of alluvial stratigraphy. Sedimentology, 26: 617-644.
  • 23. Bromley, R. G., 1996. Trace Fossils: Biology, Taphonomy, and Applications, 2nd Edition. Chapman and Hall, London, 361 pp.
  • 24. Bromley, R. G. & Asgaard, U., 1979. Triassic freshwater ichnocoenoses from Carlsberg Fjord, east Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 28: 39-80.
  • 25. Cater, F. W., 1970. Geology of the Salt Anticline Region in southwestern Colorado. Geological Survey Professional Paper, 637: 1-80.
  • 26. Cecil, C. B., 2003. The concept of autocyclic and allocyclic controls on sedimentation and stratigraphy, emphasizing the climatic variable. In: Cecil, C. B. & Edgar, T. N. (eds), Climate Controls on Stratigraphy. SEPM Special Publication, 77: 13-20.
  • 27. Cleveland, D. M., Atchley, S. C. & Nordt, L. C., 2007. Continental sequence stratigraphy of the Upper Triassic (Norian-Rhatian) Chinle strata, northern New Mexico, USA: Allocyclic and autocyclic origins of palaeosols-bearing alluvial successions. Journal of Sedimentary Research, 77: 909-924.
  • 28. Cleveland, D.M., Nordt, L.C. & Atchley, S.C., 2008a. Paleosols, trace fossils, and precipitation estimates of the uppermost Triassic strata in northern New Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 257: 421-444.
  • 29. Cleveland, D. M., Nordt, L. C., Atchley, S. C. & Dworkin, S., 2008b. Pedogenic carbonate isotopes as evidence for extreme climate events preceding the Triassic-Jurassic boundary: Implications for the biotic crisis? Geological Society of America Bulletin, 120: 1408-1415.
  • 30. Collinson, J. D., 1986. Alluvial sediments. In: Reading, H. G. (ed.), Sedimentary Environments and Facies, 2nd Edition. Blackwell Scientific Publication, Oxford, pp. 20-62.
  • 31. Compton, R. R., 1985. Geology in the Field. John Wiley & Sons, Inc., New York, 398 pp.
  • 32. Counts, J. W. & Hasiotis, S. T., 2009. Neoichnological experiments with masked chafer beetles (Coleoptera: Scarabaeidae): Implications for backfilled continental trace fossils. Palaios, 24: 74-91.
  • 33. Counts, J. W. & Hasiotis, S. T., 2014. Distribution, palaeoenvironmental implications, and stratigraphic architecture of palaeosols in Lower Permian continental deposits of western Kansas, U.S.A. Journal of Sedimentary Research, 84: 144-167.
  • 34. Dickinson, W. R., 1981. Plate Tectonic evolution of the southern Cordillera. In: Dickinson, W. R. & Payne, W. D. (eds), Relations of Tectonics to Ore Deposits in the Southern Cordillera. Arizona Geological Society Digest, 14: 113-135.
  • 35. Dickinson, W. R. & Gehrels, G. E., 2008. U-Pb ages of detrital zircons in relation to palaeogeography: Triassic palaeodrainage networks and sediment dispersal across southwest Laurentia. Journal of Sedimentary Research, 78: 745-764.
  • 36. Driese, S. G. & Foreman J. L., 1992. Paleopedology and palaeoclimatic implications of Late Ordovician vertic palaeosols, Juniata Formation, southern Appalachians. Journal of Sedimentary Petrology, 62: 71-83.
  • 37. Driese, S. G. & Mora, C. I., 1993. Physico-chemical environment of pedogenic carbonate formation in Devonian vertic palaeosols, central Appalachians, USA. Sedimentology, 40: 199-216.
  • 38. Driese, S. G. & Mora, C. I., 2002. Paleopedology and stable isotope geochemistry of Late Triassic (Carnian-Norian) palaeosols, Durham Sub-basin, North Carolina, U.S.A. Implications for palaeoclimate and palaeoatmospheric PCO2. In: Renaut, R. W. & Ashley, G. M. (eds), Sedimentation in Continental Rifts. SEPM Special Publication, 73: 207-218.
  • 39. Driese, S. G., Simpson E. L. & Eriksson, K. A., 1995. Redoximorphic palaeosols in alluvial and lacustrine deposits, 1.8 GA Lochness Formation, Mount Isa, Australia: Pedogenic processes and implications for palaeoclimate. Journal of Sedimentary Research, A65: 675-689.
  • 40. Dubiel, R. F., 1987. Sedimentology of the Upper Triassic Chinle Fm, southeastern Utah - Paleoclimatic implications. In: Morales, M. & Elliott, D. K. (eds), Triassic Continental Deposits of the American Southwest. Journal of the Arizona-Nevada Academy of Science, 22: 35-45.
  • 41. Dubiel, R. F., 1989. Depositional and climatic setting of the Upper Triassic Chinle Fm, Colorado Plateau. In: Lucas, S. G. & Hunt, A. P. (eds), Dawn of the Age of Dinosaurs in the American Southwest. New Mexico Museum of Natural History, Albuquerque, pp. 171-187.
  • 42. Dubiel, R. F., 1994. Triassic deposystems, palaeogeography, and palaeoclimate of the Western Interior. In: Caputo, M. V., Peterson, J. A. & Franczyk, K. J. (eds), Mesozoic Systems of the Rocky Mountain Region, USA. SEPM (Society for Sedimentary Geology), Rocky Mountain Section, Denver, pp. 133-168.
  • 43. Dubiel, R. F. & Hasiotis, S. T., 2011. Deposystems, palaeosols, and climatic variability in a continental system: The Upper Triassic Chinle Fm, Colorado Plateau, USA. In: Davidson, S. K., Leleu, S. & North, C. P. (eds), From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation. SEPM Special Publication, 97: 393-421.
  • 44. Dubiel, R. F., Good, S. C. & Parrish, J. M., 1989. Sedimentology and Paleontology of the Upper Triassic Chinle Formation, Bedrock, Colorado. The Mountain Geologist, 26: 112-125.
  • 45. Dubiel, R. F., Parrish, J. T., Parrish, J. M. & Good, S. C., 1991. The Pangaean megamonsoon- Evidence from the Upper Triassic Chinle Fm, Colorado Plateau. Palaios, 6: 347-370.
  • 46. Dubiel, R. F., Skipp, G. & Hasiotis, S. T., 1992. Continental depositional environments and tropical palaeosols in the Upper Triassic Chinle Fm, Eagle Basin, western Colorado. In: Flores, R. M. (ed.), SEPM Mid-Year Meeting on the Mesozoic of the Western Interior, Fieldtrip Guidebook. SEPM, Fort Collins, Colorado, pp. 21-37.
  • 47. Frey, R. W., Pemberton, S. G. & Fagerstrom, J. A., 1984. Morphological, ethological, and environmental significance of the ichnogenera Scoyenia and Ancorichnus. Journal of Paleontology, 58: 511-528.
  • 48. Gaston, R., Lockley, M. G., Lucas, S. G. & Hunt, A. P., 2003. Grallator-dominated fossil footprint assemblages and associated enigmatic footprints from the Chinle Group (Upper Triassic), Gateway area, Colorado. Ichnos, 10: 153-163.
  • 49. Getty, P. R., McCarthy, T. D., Hsieh, S. & Bush, A. M., 2016. A new reconstruction of continental Treptichnus based on exceptionally preserved material from the Jurassic of Massachusetts. Journal of Paleontology, 90: 269-278.
  • 50. Gile, L. H., Peterson, F. F. & Grossman, R. B., 1966. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Science, 101: 347-360.
  • 51. Gillette, L., Pemberton, S. G. & Sarjeant, W., 2003. A Late Triassic invertebrate ichnofauna from Ghost Ranch, New Mexico. Ichnos, 10: 141-151.
  • 52. Hammersburg, S., Hasiotis, S. T. & Robison, R. A., 2018. Ichnotaxonomic assessment of the middle Cambrian Spence Shale Member of the Langston Formation, Utah. The University of Kansas Paleontological Contributions, 20: 1-66.
  • 53. Hasiotis, S. T., 1995. Crayfish fossils and burrows from the Upper Triassic Chinle Formation, Canyonlands National Park, Utah. In: Santucci, V. L. & McClelland, L. (eds), National Park Service Paleontological Research, Technical Report NPS/NRPO/
  • 54. NRTR-95/16. National Park Service/Natural Resources Publication Office, Lakewood, Colorado, pp. 49-53.
  • 55. Hasiotis, S. T., 2000. The invertebrate invasion and evolution of Mesozoic soil ecosystems: the ichnofossil record of ecological innovations. In: Gastaldo, R.A. & Dimichele, W.A. (eds), Phanerozoic Terrestrial Ecosystems. Paleontological Society Short Course, 6: 141-169.
  • 56. Hasiotis, S. T., 2002. Continental Trace Fossils. SEPM. Short Course Notes Number 51. SEPM , Tulsa, Oklahoma, 132 pp.
  • 57. Hasiotis, S. T., 2003. Complex ichnofossils of solitary and social soil organisms: understanding their evolution and roles in terrestrial palaeoecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 192: 259-320.
  • 58. Hasiotis, S. T., 2004. Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: palaeoenvironmental, stratigraphic, and palaeoclimatic significance of terrestrial and freshwater ichnocoenoses. Sedimentary Geology, 167: 177-268.
  • 59. Hasiotis, S. T., 2007. Continental ichnology: Fundamental processes and controls on trace fossil distribution. In: Miller, W. III. (ed.), Trace Fossils - Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 268-284.
  • 60. Hasiotis, S. T., 2008. Reply to the comments by Bromley et al. of the paper “Reconnaissance of the Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and palaeoclimatic significance of terrestrial and freshwater ichnocoenoses” by Stephen T. Hasiotis. Sedimentary Geology, 208: 61-68.
  • 61. Hasiotis, S. T. & Bown, T. M., 1992. Invertebrate trace fossils: The backbone of continental ichnology. In: Maples, C. G. & West, R. R. (eds), Trace Fossils. Short Courses in Paleontology, Number 55. The Paleontological Society, Knoxville, pp. 64-101.
  • 62. Hasiotis, S. T. & Demko T. M., 1996. Terrestrial and freshwater trace fossils, Upper Jurassic Morrison Formation, Colorado Plateau. In: Morales, M. (ed.), The Continental Jurassic. Museum of Northern Arizona Bulletin, 60: 355-370.
  • 63. Hasiotis, S. T. & Dubiel, R. F., 1993a. Continental trace fossils of the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. In: Lucas, S. G. & Morales, M. (eds), The Nonmarine Triassic. The New Mexico Museum of Natural History and Science Bulletin, 3: 175-178.
  • 64. Hasiotis, S. T. & Dubiel, R. F., 1993b. Trace fossil assemblages in Chinle Formation alluvial deposits at the Tepees, Petrified Forest National Park, Arizona. In: Lucas, S. G. & Morales, M. (eds), The Nonmarine Triassic. The New Mexico Museum of Natural History and Science Bulletin, 3: G42-43.
  • 65. Hasiotis, S. T. & Dubiel, R. F., 1994. Ichnofossil tiering in Triassic alluvial palaeosols: Implications for Pangean continental rocks and palaeoclimate. In: Embry, A. F., Beauchamp, B. & Glass, D. (eds), Carboniferous to Jurassic Pangea: Global Environments and Resources. Canadian Society of Petroleum Geologists, Memoir, 17: 311-317.
  • 66. Hasiotis, S. T. & Dubiel, R. F., 1995a. Continental trace fossils, Petrified Forest National Park, Arizona: Tools for palaeohydrologic and palaeoecosystem reconstructions. In: Santucci, V. L. & McClelland, L. (eds), National Park Service Paleontological Research, Technical Report NPS/NRPO/NRTR- 95/16. National Park Service/Natural Resources Publication Office, Lakewood, Colorado, pp. 82-88.
  • 67. Hasiotis, S. T. & Dubiel, R. F., 1995b. Termite (Insecta: Isoptera) nest ichnofossils from the Triassic Chinle Formation, Petrified Forest National Park, Arizona. Ichnos, 4: 119-130.
  • 68. Hasiotis, S. T. & Honey, J. G., 2000. Paleohydrologic and stratigraphic significance of crayfish burrows in continental deposits: Examples from several Paleocene Laramide basins in the Rocky Mountains. Journal of Sedimentary Research, 70: 127-139.
  • 69. Hasiotis, S. T., Kraus, M. J. & Demko, T. M., 2007a. Climatic controls on continental trace fossils. In: Miller, W., III. (ed.), Trace Fossils - Concepts, Problems, Prospects Elsevier, Amsterdam, pp. 172-195.
  • 70. Hasiotis, S. T. & Martin, A. J., 1999. Probable reptile nests from the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. In: Santucci, V. L. & McClelland, L. (eds), National Park Service Paleontological Research, Technical Report, NPS/NRGRD/GRDTR-99/03. National Park Service/ Natural Resources Publication Office, Lakewood, Colorado, pp. 85-90.
  • 71. Hasiotis, S. T. & Mitchell, C. E., 1993. A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, palaeo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos, 2: 291-314.
  • 72. Hasiotis, S. T., Mitchell, C. E. & Dubiel, R. F., 1993. Application of morphologic burrow interpretations to discern continental burrow architects: Lungfish or crayfish. Ichnos, 2: 315-333.
  • 73. Hasiotis, S. T. & Platt, B. F., 2012. Exploring the sedimentary, pedogenic, and hydrologic factors that control the occurrence and role of bioturbation in soil formation and horizonation in continental deposits: an integrative approach. The Sedimentary Record, 10: 4-9.
  • 74. Hasiotis, S. T., Platt, B. F., Hembree, D. I. & Everhart, M., 2007b. The trace-fossil record of vertebrates. In: Miller, W., III (ed.), Trace Fossils - Concepts, Problems, Prospects, Elsevier, Amsterdam, pp. 196-218.
  • 75. Hasiotis, S. T., Platt, B. F., Reilly, M., Amos, K., Lang, S., Kennedy, D., Todd, D. A. & Michel, E., 2012. Actualistic studies of the spatial and temporal distribution of terrestrial and aquatic organism traces in continental environments to differentiate lacustrine from fluvial, eolian, and marine deposits in the geologic record. In: Baganz, O. W., Bartov, Y, Bohacs, K. & Nummedal, D. (eds), Lacustrine sandstone reservoirs and hydrocarbon systems. AAPGMemoir, 95: 433-489.
  • 76. Hasiotis, S. T., Wellner, R. W., Martin, A. J. & Demko, T. M., 2004. Vertebrate burrows from Triassic and Jurassic continental deposits in North America and Antarctica: Their palaeoenvironmental and palaeoecological significance. Ichnos, 11: 103-124.
  • 77. Hazel, J. E., Jr., 1994. Sedimentary response to intrabasinal salt tectonism in the Upper Triassic Chinle Fm, Paradox Basin, Utah. U. S. Geological Survey Bulletin, 2000-F: 1-34.
  • 78. Hembree, D. I. & Hasiotis, S. T., 2008. Miocene vertebrate and invertebrate burrows defining compound palaeosols in the Pawnee Creek Formation, Colorado, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 270: 349-365.
  • 79. Hobbs, H. H. Jr., 1981. The crayfishes of Georgia. Smithsonian Contributions to Zoology, 318: 1-549.
  • 80. Jager, T. J., 1982. Soils of the Serengeti Woodlands, Tanzania. Centre for Agricultural Publishing and Documentation, Wageningen, 239 pp.
  • 81. Jenny, H., 1941. Factors of Soil Formation: A System of Quantitative Pedology. McGraw-Hill, New York, 281 pp.
  • 82. Johnston, P. A., Eberth, D. A. & Anderson, P. K., 1996. Alleged vertebrate eggs from Upper Cretaceous redbeds, Gobi Desert, are fossil insect (Coleoptera) pupal chambers: Fictovichnus new ichnogenus. Canadian Journal of Earth Sciences, 33: 511-525.
  • 83. Klappa, C. F., 1980. rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology, 27: 613-629.
  • 84. Kraus, M. J., 1987. Integration of channel and floodplain suites II. Vertical relations of alluvial palaeosols. Journal of Sedimentary Petrology, 57: 602-612.
  • 85. Kraus, M. J., 1999. Paleosols in clastic sedimentary rocks: Their geologic applications. Earth Science Reviews, 47: 41-70.
  • 86. Kraus, M. J., 2002. Basin scale changes in floodplain palaeosols: Implications for interpreting fluvial architecture. Journal of Sedimentary Research, 72: 500-509.
  • 87. Kraus, M. J. & Aslan, A., 1993. Eocene hydromorphic palaeosols: Significance for interpreting ancient floodplain processes. Journal of Sedimentary Petrology, 63: 453-463.
  • 88. Kraus, M. J. & Hasiotis, S. T., 2006. Significance of different modes of rhizolith preservation to interpreting palaeoenvironmental and palaeohydrologic settings: Examples from Paleogene palaeosols, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 76: 633-646.
  • 89. Kraus, M. J. & Middleton, L. T., 1987a. Dissected palaeotopography and base-level changes in a Triassic fluvial system. Geology, 15: 18-21.
  • 90. Kraus, M. J. & Middleton, L. T., 1987b. Contrasting architecture of two alluvial suites in different structural settings. In: Ethridge, F. G., Flores, R. M. & Harvey, M. D. (eds.), Recent Developments in Fluvial Sedimentology. SEPM Special Publication, 39: 253-262.
  • 91. Kureck, A., 1996. Eintagsfliegen am Rhein: Zur Biologie von Ephoron virgo (Oliver, 1791). Decheniana, 35: 17-24.
  • 92. Loope, D. B., Steiner, M. B., Rowe, C. M. & Lancaster, N., 2004. Tropical westerlies over Pangaean sand seas. Sedimentology, 51: 315-322.
  • 93. Lydolph, P.E., 1985. The Climate of Earth. Rowman & Allanheld Publishers, Totowa, NJ, 386 pp.
  • 94. Machette, M. N., 1985. Calcic soils of the southwestern United States. Geological Society of America Special Paper, 203: 1-21.
  • 95. Mack, G. H., James, W. C. & Monger, H. C., 1993. Classification of palaeosols. Geological Society of America Bulletin, 105: 129-136.
  • 96. Martin, A. J. & Hasiotis, S. T., 1998. Vertebrate tracks and their significance in the Chinle Formation (Late Triassic) Petrified Forest National Park, Arizona. In: Santucci, V. L. & McClelland, L. (eds), National Park Service Paleontological Research, Technical Report NPS/NRGRD/GRDTR-98/01. National Park Service/Natural Resources Publication Office, Lakewood, Colorado, p. 138-143.
  • 97. Melchor, R. N., Bromley, R. G., & Bedatou, E., 2009. Spongeliomorpha in nonmarine settings: an ichnotaxonomic approach. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100: 429-436. doi:10.1017/ S1755691009008056
  • 98. Miall, A. D., 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer-Verlag, Berlin, 582 pp.
  • 99. Moore, D. M. & Reynolds, R. C., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Second Edition. Oxford University Press, New York, 378 pp.
  • 100. Munsell®, 2009. Soil Colour Book, Revised Edition. [Unpaginated.]
  • 101. Nordt, L., Atchley, S. & Dworkin, S., 2015. Collapse of the Late Triassic megamonsoon in western equatorial Pangea, present-day American southwest. Geological Society of America Bulletin, B31186-1.
  • 102. Oliver, J. E., 1973. Climate and Man’s Environment: An Introduction to Applied Climatology. Wiley, New York, 517 pp.
  • 103. Olsen, P. E., 1997. Stratigraphic record of the Early Mesozoic breakup of Pangea in the Laurasia-Gondwana rift system. Annual Review of Earth and Planetary Sciences, 25: 337-401.
  • 104. Olsen, P. E. & Kent, D. V., 1996. Milankovitch climate forcing in the tropics of Pangea during the Late Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 122: 1-26.
  • 105. Olsen, P. E. & Kent, D. V., 1999. Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behaviour of the plants. Philosophical Transactions of the Royal Society, 357: 1761-1786.
  • 106. Olsen, P. E., Kent, D. V., Cornet, B., Witte, W. K. & Schlische, R. W., 1996. High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America). Geological Society of America Bulletin, 108: 40-77.
  • 107. Parcerisa, D., Gomez-Gras, D. & Martin-Martin, J. D., 2006. Calcretes, oncolites, and lacustrine limestones in Upper Oligocene alluvial fans of the Montgat area (Catalan Coastal Ranges, Spain). In: Alonso-Zarza, A. M. & Tanner, L. H. (eds), Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates. Geological Society of America Special Paper, 416: 105-118.
  • 108. Parrish, J. T. & Peterson, F., 1988. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States - A comparison. Sedimentary Geology, 56: 261-282.
  • 109. Pemberton, S. G. & Frey, R. W., 1982. Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. Journal of Paleontology, 56: 843-881.
  • 110. Pipiringos, G. N. & O’Sullivan, R. B., 1978. Principle unconformities in Triassic and Jurassic rocks, Western Interior United States - A preliminary study. Geological Survey Professional Paper, 1035-A: 1-29.
  • 111. Prochnow, S. J., Nordt, L. C., Atchley, S. C. & Hudec, M. R., 2006a. Multi-proxy palaeosol evidence for Middle and Late Triassic climate trends in eastern Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 232: 53-72.
  • 112. Prochnow, S. J., Nordt, L. C., Atchley, S. C., Hudec, M. & Boucher, T. E., 2005. Triassic palaeosol catenas associated with a salt-withdrawal minibasin in southeastern Utah, U.S.A. Rocky Mountain Geology, 40: 25-49.
  • 113. Prochnow, S. J., Atchley, S. C., Boucher, T. E., Nordt, L. C. & Hudecs, M. R., 2006b. The influence of salt withdrawal subsidence on palaeosol maturity and cyclic fluvial deposition 114. in the Upper Triassic Chinle Formation, Castle Valley, Utah. Sedimentology, 53: 1319-1345.
  • 114. Ratcliffe, B. C. & Fagerstrom, J. A., 1980. Invertebrate lebensspuren of Holocene floodplains: their morphology, origin and palaeoecological significance. Journal of Paleontology, 54): 614-630.
  • 115. Retallack, G. J., 2001. Soils of the Past: An Introduction to Paleopedology, 2ndEdition. Blackwell Science, Oxford, 404 pp.
  • 116. Riggs, N. R., Lehman, T. M., Gehrels, G. E. & Dickinson, W. R., 1996. Detrital zircon link between headwaters and terminus of the Upper Triassic Chinle-Dockum palaeoriver system. Science, 273: 97-100.
  • 117. Rosell, J. & Obrador, A., 1982. Oncolites from lacustrine sediments in the Cretaceous of north-eastern Spain. Sedimentology, 29: 433-436.
  • 118. Rowe, C. M., Loope, D. B., Oglesby, R. J., Van der Voo, R. & Broadwater, C. E., 2007. Inconsistencies between Pangean reconstructions and basic climate controls. Science, 318: 1284-1286.
  • 119. Shankar, N. & Achyuthan, H., 2007. Genesis of calcic and petrocalcic horizons from Coimbatore, Tamil Nadu: Micromorphology and geochemical studies. Quaternary International, 175: 140-154.
  • 120. Shrivastava, P., Bhattacharyya, T. & Pal, D. K., 2002. Significance of the formation of calcium carbonate minerals in the pedogenesis and management of cracking clay soils (vertisols) of India. Clays and Clay Minerals, 50: 111-126.
  • 121. Sinclair, A. R. E., Mduma, S. A. R., Hopcraft, J. G. C., Fryxell, J. M., Hilborn, R. & Thirgood, S., 2007. Long-term ecosystem dynamics in the Serengeti: Lessons for conservation. Conservation Biology, 21: 580-590.
  • 122. Slingerland, R. & Smith, N. D., 2004. River avulsions and their deposits. Annual Review of Earth and Planetary Sciences, 32: 257-285.
  • 123. Smith, R. M. H., 1987. Helical burrow casts of therapsid origin from the Beaufort Group (Permian) of South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 60: 155-170.
  • 124. Smith, J. J. & Hasiotis, S. T., 2008. Traces and burrowing behaviors of the cicada nymph Cicadetta calliope: Neoichnology and palaeoecological significance of extant soil-dwelling insects. Palaios, 23: 503-513.
  • 125. Smith, J. J., Hasiotis, S. T., Kraus, M. J. & Woody, D., 2008a. Naktodemasis bowni: new ichnogenus and ichnospecies for adhesive meniscate burrows (AMB), and palaeoenvironmental implications, Paleogene Willwood Formation, Bighorn Basin, Wyoming. Journal of Paleontology, 82: 267-278.
  • 126. Smith, J. J., Hasiotis, S. T., Kraus, M. J. & Woody, D. T., 2008b. Relationship of floodplain ichnocoenoses to palaeopedology, palaeohydrology, and palaeoclimate in the Willwood Formation, Wyoming, during the Paleocene-Eocene Thermal Maximum. Palaios, 23: 683-699.
  • 127. Smith, J. J., Hasiotis, S. T., Woody, D. T. & Kraus, M. J., 2008c. Paleoclimatic implications of crayfish-mediated prismatic structures in palaeosols of the Paleogene Willwood Formation, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 78: 323-334.
  • 128. Smith, J. J., Hasiotis, S. T., Woody, D. T., & Kraus, M. J. 2009. Transient dwarfism of soil fauna during the Paleocene- Eocene Thermal Maximum. Proceedings of the National Academy of Science, Early Edition, www.pnas.org/cgi/doi/10.1073/ pnas.0909674106, p. 1-6, plus supplemental data.
  • 129. Smith, N. D., Cross, T. A., Dufficy, J. P. & Clough, S. R., 1989. Anatomy of an avulsion. Sedimentology, 36: 1-23.
  • 130. Stanley, K. O. & Fagerstrom. J. A., 1974. Miocene invertebrate trace fossils from a braided river environment, western Nebraska, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 15: 63-82.
  • 131. Steiner, M. B. & Lucas, S. G., 2000. Paleomagnetism of the Late Triassic Petrified Forest Formation, Chinle Group, western United States: Further evidence of ‘large’ rotation of the Colorado Plateau. Journal of Geophysical Research, Series B, Solid Earth and Planets, 105: 25791-25808.
  • 132. Stewart, J. H., Anderson, T. H., Haxel, G. B., Silver, L. T. & Wright, J. E., 1986. Late Triassic palaeogeography of the southern Cordillera: The problem of a source for voluminous volcanic detritus in the Chinle Fm of the Colorado Plateau region. Geology, 14: 567-570.
  • 133. Stewart, J. H., Poole, F. G. & Wilson, R. F., 1972. Stratigraphy and origin of the Chinle Fm and related Upper Triassic strata in the Colorado Plateau region. U. S. Geological Survey Professional Paper, 690: 1-336.
  • 134. Stiles, C. A., Mora, C. I. & Driese, S. G., 2001. Pedogenic iron-manganese nodules in vertisols: A new proxy for palaeoprecipitation? Geology, 29: 943-946.
  • 135. Teller, J. T. & Last, W. M., 1990. Paleohydrological indicators in playas and salt lakes, with examples from Canada, Australia, and Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 76: 215-240.
  • 136. Therrien, F. & Fastovsky, D. E., 2000. Paleoenvironments of early theropods, Chinle Fm (Late Triassic), Petrified Forest National Park, Arizona. Palaios, 15: 194-211.
  • 137. Trendell, A. M., Atchley, S. C. & Nordt, L. C., 2012. Depositional and diagenetic controls on reservoir attributes within a fluvial outcrop analog: Upper Triassic Sonsela Mbr of the Chinle Fm, Petrified Forest National Park, Arizona. AAPG Bulletin, 96: 679-707.
  • 138. Trendell, A. M., Atchley, S. C. & Nordt, L. C., 2013a. Facies analysis of a probable large-fluvial-fan depositional system: The Upper Triassic Chinle Fm at Petrified Forest National Park, Arizona, U.S.A. Journal of Sedimentary Research, 83: 873-895.
  • 139. Trendell, A. M., Nordt, L. C., Atchley, S. C., Leblanc, S. L. & Dworkin, S. I., 2013b. Determining floodplain plant distributions and populations using palaeopedology and fossil root traces: Upper Triassic Sonsela Mbr of the Chinle Fm at Petrified Forest National Park, Arizona. Palaios, 28: 471-490.
  • 140. Turner, B. R., 1993. Paleosols in Permo-Triassic continental sediments from Prydz Bay, East Antarctica. Journal of Sedimentary Petrology, 63: 694-706.
  • 141. Van der Voo, R., Mauk, F. J. & French R. B., 1976. Permian- Triassic continental configurations and the origin of the Gulf of Mexico. Geology, 4: 177-180.
  • 142. van der Kolk, D. A., Flaig, P. P. & Hasiotis, S. T., 2015. Paleoenvironmental reconstruction of a Late Cretaceous, muddy, river-dominated polar deltaic system: Schrader Bluff-Prince Creek Formation transition, Shivugak Bluffs, North Slope of Alaska, U.S.A. Journal of Sedimentary Research, 85: 903-936.
  • 143. Vittum, P. J., Villani, M. G. & Tahiro, H., 1999. Turfgrass Insects of the United States and Canada, 2nd Edition. Cornell University Press, Ithaca, 422 pp.
  • 144. Wallace, J. B. & Merritt, R. W., 1980. Filter-feeding ecology of aquatic insects. Annual Review of Entomology, 25: 103-32.
  • 145. Zeigler, K. E. & Geissman, J. W., 2011. Magnetostratigraphy of the Upper Triassic Chinle Group of New Mexico: Implications for regional and global correlations among Upper Triassic sequences. Geosphere, 7: 802-829.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-81393ec0-02d5-4652-b385-33569c106055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.