Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A parametric experimental investigation has been conducted to investigate effects of stir casting process parameters on recently developed A713-TiB2 composites. The manufacturing process involved varying the stirring time (5, 10, and 15 minutes) and speed of stirring (500, 600 & 700 rpm). The microstructure and mechanical properties of the manufactured composites were evaluated by analyzing the effects of the varying stirring speeds and times. The analysis techniques used include optical microscopy (OM), scanning electron microscopy (SEM), micro-hardness and tensile testing. Grain size analysis of the as-cast MMCs revealed that coarser grain structure was observed at lower stirring time and lower speed. Finer grain structure was achieved by increasing stirring time and speed. Microhardness and tensile strength was observed to be affected by both stirring speed and stirring time, as demonstrated by the test results. The uniform dispersion was attained when stirring was done at 600 rpm for 10 minutes. Further increase in stirring speed and stirring time leads to the reduction in microhardness and tensile strength. In the present study, the relationship between the microstructure and mechanical properties of the A713-TiB2 composite and the processing parameters such as stirring speed and stirring time have been investigated.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1251--1260
Opis fizyczny
Bibliogr. 45 poz., fot., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, SVNIT, Surat, Gujarat-395007, India
autor
- Department of Mechanical Engineering, SVNIT, Surat, Gujarat-395007, India
autor
- Department of Mechanical Engineering, SVNIT, Surat, Gujarat-395007, India
Bibliografia
- [1] A. Ramanathan, P.K. Krishnan, R. Muraliraja, A review on the production of metal matrix composites through stir casting - Furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 42, 213-245(2019). DOI: https://doi.org/10.1016/j.jmapro.2019.04.017
- [2] R. Thiraviam, V. Ravisankar, P.K. Krishnan, R. Arunachalam, Microstructural and Mechanical Properties of Al-Reinforced with Micro and Nano Al2O3 Particles using Stir-Squeeze Casting Method. Int. J. Mech. Prod. Eng. Res. Dev. 10, 193-202 (2020). DOI: https://doi.org/10.24247/ijmperdjun202018
- [3] V. Bhuvaneswari, L. Rajeshkumar, R. Saravanakumar, D. Balaji, Synthesis and Characterization of Bioceramics Reinforced Aluminium Matrix Composites. Arch. Metall. Mater. 67 (4), 1217-1226 (2022). DOI: https://doi.org/10.24425/amm.2022.141045
- [4] A.M. Jaber, P.K. Krishnan, Development of a sustainable novel aluminum alloy from scrap car wheels through a stir-squeeze casting process. Kov. Mater. Mater. 60 (2022). DOI: https://doi.org/10.31577/km.2022.3.151
- [5] J.D.R. Selvam, D.R. Smart, I. Dinaharan, Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting. Mater. Des. 49, 28-34 (2013). DOI: https://doi.org/10.1016/j.matdes.2013.01.053
- [6] S. Rangrej, S. Pandya, J. Menghani, Effects of TiB2 reinforcement proportion on structure and properties of stir cast A713 composites, Can. Metall. Q. (2022). DOI: https://doi.org/10.1080/00084433.2022.2149202
- [7] S. Rangrej, V. Mehta, V. Ayar, M. Sutaria, Effects of stir casting process parameters on dispersion of reinforcement particles during preparation of metal composites. Mater. Today: Proc. 43, 471-475 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.11.1002
- [8] R. Thiraviam, V. Ravisankar, P. Kumar, R. Thanigaivelan, R. Arunachalam, A novel approach for the production and characterisation of aluminium-alumina hybrid metal matrix composites. Mater. Res. Express. 7 (4), 046512 (2020). DOI: https://doi.org/10.1088/2053-1591/ab8657
- [9] Z.Y. Liu, D. Kent, G.B. Schaffer, Powder injection moulding of an Al-AlN metal matrix composite. Mater. Sci. Eng. A. 513, 352-356 (2009). DOI: https://doi.org/10.1016/j.msea.2009.02.001
- [10] H. Mindivan, Reciprocal sliding wear behaviour of B4C particulate reinforced aluminum alloy composites. Mater. Lett. 64(3), 405-407 (2010). DOI: https://doi.org/10.1016/j.matlet.2009.11.032
- [11] R. Arunachalam, P.K. Krishnan, Compressive Response of Aluminum Metal Matrix Composites, in: Encyclopedia of Materials: Composites. Elsevier Ltd., 1-21(2021). DOI: https://doi.org/10.1016/B978-0-12-803581-8.11818-1
- [12] M.A. Moghaddas, S.F. Kashani-Bozorg, Effects of thermal conditions on microstructure in nanocomposite of Al/Si3N4 produced by friction stir processing. Mater. Sci. Eng. A. 559, 187-193 (2013). DOI: https://doi.org/10.1016/j.msea.2012.08.073
- [13] Q. Wu, C. Yang, F. Xue, Y. Sun, Effect of Mo addition on the microstructure and wear resistance of in situ TiC/Al composite. Mater. Des. 32 (10), 4999-5003 (2011). DOI: https://doi.org/10.1016/j.matdes.2011.06.045
- [14] I. Dinaharan, N. Murugan, Dry sliding wear behavior of AA6061/ZrB2 in-situ composite. Trans. Nonferrous Met. Soc. China. 22 (4), 810-818 (2012). DOI: https://doi.org/10.1016/S1003-6326(11)61249-1
- [15] V. Mohanavel, Mechanical and microstructural characterization of AA7178-TiB2 composites. Mater. Test. 62 (2), 146-150 (2020). DOI: https://doi.org/10.3139/120.111465
- [16] Y. Pazhuhanfar, B. Eghbali, Processing and characterization of the microstructure and mechanical properties of Al6061-TiB2 composite. Int. J. Miner. Metall. 28 (6), 1080-1089 (2021). DOI: https://doi.org/10.1007/s12613-021-2288-0
- [17] S. Yadav, A. Aggrawal, A. Kumar, K. Biswas, Effect of TiB2 addition on wear behavior of (AlCrFeMnV) 90Bi10 high entropy alloy composite. Tribol. Int. 132, 62-74 (2019). DOI: https://doi.org/10.1016/j.triboint.2018.11.025
- [18] K.L. Tee, L. Lu, M.O. Lai, Synthesis of in situ Al-TiB2 composites using stir cast route. Compos. Struct. 47 (1-4), 589-593 (1999). DOI: https://doi.org/10.1016/S0263-8223(00)00030-1
- [19] R. Muraliraja, K. Pradeepkumar, P. Mohanraj, T.V. Kumar, C. Dhanasekaran, M. Chandrasekaran, S. Ragavanantham, V.S. Shaisundaram, The effects of electroless Ni-P Coated SiC on the Properties of Magnesium Composite. Mater. Perform. Charact. 11 (1), 223-235 (2022). DOI: https://doi.org/10.1520/MPC20210089
- [20] D. Paulraj, P.D. Jeyakumar, G. Rajamurugan, P. Krishnasamy, Influence of Nano TiO2/Micro (SiC/B4C) reinforcement on the mechanical, wear and corrosion behaviour of A356 metal matrix composite. Arch. Metall. Mater. 66 (3), 871-880 (2021). DOI: https://doi.org/10.24425/amm.2021.136392
- [21] A.M. Sankhla, K.M. Patel, M.A. Makhesana, K. Giasin, D.Y. Pimenov, S. Wojciechowski, N. Khanna, Effect of mixing method and particle size on hardness and compressive strength of aluminium based metal matrix composite prepared through powder metallurgy route. J. Mater. Res. Technol. 18, 282-292 (2022). DOI: https://doi.org/10.1016/j.jmrt.2022.02.094
- [22] S. Rangrej, S. Pandya, J. Menghani, Effects of reinforcement additions on properties of aluminium matrix composites - a review. Mater. Today: Proc. 44, 637-641 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.10.604
- [23] M.A. Taha, Practicalization of cast metal matrix composites (MMCCs). Mater. Des. 22 (6), 431-441 (2001). DOI: https://doi.org/10.1016/S0261-3069(00)00077-7
- [24] J. Hashim, L. Looney, M.S.J. Hashmi, Particle distribution in cast metal matrix composites - Part I. J. Mater. Process. Technol. 123(2), 251-257 (2002). DOI: https://doi.org/10.1016/S0924-0136(02)00098-5
- [25] R. Arunachalam, S. Piya, P.K. Krishnan, R. Muraliraja, J.V. Christy, A.H.I. Mourad, M. Al-Maharbi, Optimization of stir-squeeze casting parameters for production of metal matrix composites using a hybrid analytical hierarchy proces-Taguchi-Grey approach. Eng. Optim. 52(7), 1166-1183(2019). DOI: https://doi.org/10.1080/0305215X.2019.1639693
- [26] S.B. Prabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J. Mater. Process. Technol. 171 (2), 268-273 (2006). DOI: https://doi.org/10.1016/j.jmatprotec.2005.06.071
- [27] J. Hashim, L. Looney, M.S.J. Hashmi, The enhancement of wettability of SiC particles in cast aluminium matrix composites. J. Mater. Process. Technol. 119 (1-3), 329-335 (2001). DOI: https://doi.org/10.1016/S0924-0136(01)00919-0
- [28] G. Sasaki, M. Yoshida, N. Fuyama, T. Fujii, Modeling of compocasting process and fabrication of AZ91d magnesium alloy matrix composites. J. Mater. Process. Technol. 130, 151-155 (2002). DOI: https://doi.org/10.1016/S0924-0136(02)00712-4
- [29] P.K. Krishnan, R. Arunachalam, A. Husain, M. Al-Maharbi, Studies on the influence of stirrer blade design on the microstructure and mechanical properties of a novel aluminum metal matrix composite. J. Manuf. Sci. Eng. Trans. ASME 143, 1-13 (2021). DOI: https://doi.org/10.1115/1.4048266
- [30] G. Sozhamannan, S. Prabu, V. Venkatagalapathy, Effect of processing parameters on metal matrix composites: Stir casting process. J. Surf. Eng. Mater. Adv. Technol. 2, 11-15 (2012). DOI: https://doi.org/10.4236/jsemat.2012.21002
- [31] H. Zhang, L. Geng, L. Guan, L. Huang, Effects of SiC particle pretreatment and stirring parameters on the microstructure and mechanical properties of SiCp/Al-6.8 Mg composites fabricated by semi-solid stirring technique. Mater. Sci. Eng. A. 528 (1), 513-518 (2010). DOI: https://doi.org/10.1016/j.msea.2010.09.046
- [32] L.N. Guan, G. Lin, H.W. Zhang, L.J. Huang, Effects of stirring parameters on microstructure and tensile properties of (ABOw + SiCp)/6061Al composites fabricated by semi-solid stirring technique. Trans. Nonferrous Met. Soc. China. 21, 274-279 (2011). DOI: https://doi.org/10.1016/S1003-6326(11)61590-2
- [33] M.K. Akbari, O. Mirzaee, H.R. Baharvandi, Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 46, 199-205 (2013). DOI: https://doi.org/10.1016/j.matdes.2012.10.008
- [34] H. Khosravi, H. Bakhshi, E. Salahinejad, Effects of compocasting process parameters on microstructural characteristics and tensile properties of A356-SiCp composites. Trans. Nonferrous Met. Soc. China. 24(8), 2482-2488 (2014). DOI: https://doi.org/10.1016/S1003-6326(14)63374-4
- [35] P.K. Krishnan, J.V. Christy, R. Arunachalam, A.H.I. Mourad, R. Muraliraja, M. Al-Maharbi, V. Murali, M.M. Chandra, Production of aluminium alloy-based metal matrix composites using scrap aluminum alloy and waste materials: Influence on microstructure and mechanical properties. J. Alloys Compd. 784. 1047-1061(2019). DOI: https://doi.org/10.1016/j.jallcom.2019.01.115
- [36] A.I. Mourad, J. Victor, P.K. Krishnan, Production of novel recycled hybrid metal matrix composites using optimized stir squeeze casting technique. J. Manuf. Process. 88, 45-58 (2023). DOI: https://doi.org/10.1016/j.jmapro.2023.01.040
- [37] H.M. Rajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Effect of TiB2 content and temperature on sliding wear behavior of AA7075/TiB2 in situ aluminum cast composites. Arch. Civ. Mech. Eng. 14 (1), 72-79 (2014). DOI: https://doi.org/10.1016/j.acme.2013.05.005
- [38] B.S. Murty, S.A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 47 (1), 3-29 (2002). DOI: https://doi.org/10.1179/095066001225001049
- [39] J.V. Christy, R. Arunachalam, A.H.I. Mourad, P.K. Krishnan, S. Piya, M. Al-Maharbi, Processing, Properties, and Microstructure of Recycled Aluminum Alloy Composites Produced Through an Optimized Stir and Squeeze Casting Processes. J. Manuf. Process. 59, 287-301 (2020). DOI: https://doi.org/10.1016/j.jmapro.2020.09.067
- [40] S. Charles, V.P. Arunachalam, Effect of particle inclusions on the mechanical properties of composites fabricated by liquid metallurgy. Indian J. Eng. Mater. Sci. 10, 301-305 (2003). DOI: http://nopr.niscpr.res.in/handle/123456789/24213
- [41] A.R. Kennedy, A.E. Karantzalis, S.M. Wyatt, The microstructure and mechanical properties of TiC and TiB2-reinforced cast metal matrix composites. J. Mater. Sci. 34 (5), 933-940 (1999). DOI: https://doi.org/10.1023/A:1004519306186
- [42] J.J. Moses, I. Dinaharan, S.J. Sekhar, Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminium matrix composites produced using stir casting. Trans. Nonferrous Met. Soc. China. 26(6), 1498-1511 (2016). DOI: https://doi.org/10.1016/S1003-6326(16)64256-5
- [43] K.R. Ravi, V.M. Sreekumar, R.M. Pillai, C. Mahato, K.R. Amaranathan, B.C. Pai, Optimization of mixing parameters through a water model for metal matrix composites synthesis. Mater. Des. 28 (3), 871-881 (2007). DOI: https://doi.org/10.1016/j.matdes.2005.10.007
- [44] S.B. Prabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J. Mater. Process. Technol. 171 (2), 268-273 (2006). DOI: https://doi.org/10.1016/j.jmatprotec.2005.06.071
- [45] M.K. Akbari, O. Mirzaee, H.R. Baharvandi, Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 46, 199-205 (2013). DOI: https://doi.org/10.1016/j.matdes.2012.10.008
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8136bfe3-e8c7-4a8f-be36-b8b0c690fa21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.