PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphological and chemical relationships in nanotubes formed by anodizing of Ti6al4v alloy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electrochemical formation of oxide nanotubes on the Ti6Al4V alloy has been so far difficult due to easy dissolution of vanadium reach β-phase of the two phase material. Due to the topographical heterogeneity of the anodic layer in nano and microscale at anodizing of the Ti6Al4V alloy we focused to establish the relationships between nanotube diameters on both phases of the alloy and fluorides concentration in electrolyte. We studied the effect of fluoride concentration (0.5-0.7 wt.%) in 99% ethylene glycol on morphological parameters of nanotube layer on the Ti6Al4V alloy anodized at 20V for 20 min. Nanotubes with diameter ~40-50 nm ±5nm on the entire Ti6Al4V alloy surface in electrolyte containing 0.6% wt. NH4F were obtained. Microscale roughness studies revealed that nanotubular layer on α-phase is thicker than on β-phase. The annealing of nanotube layers at 600°C for 2h in air, nitrogen and argon, typically performed to improve their electrical properties, influenced chemical composition and morphology of nanotubes on the Ti6Al4V alloy. The vanadium oxides (VO2, V2O3, V2O5) were present in surface nanotube layer covering both phases of the alloy and the shape of nanotubes was preserved after annealing in nitrogen.
Rocznik
Strony
12--20
Opis fizyczny
Bibliogr. 26 poz., wykr., tab.
Twórcy
  • University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland
  • University of Zielona Góra, Faculty of Mechanical Engineering, Department of Biomedical Engineering, 65-516 Zielona Góra, Poland
Bibliografia
  • 1. Variola F., Yi J.H., Richert L., Wuest J.D., Rosei F., Nanci A.: Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. Biomaterials 29 (2008), 1285-1298.
  • 2. Narayanan R., Seshadri S.K.: Phosphoric Acid anodization of Ti6Al4V- structural and corrosion aspects. Corrosion Science 49 (2007), 542-558.
  • 3. Lukacova H., Plesingerova B., Vojtko M., Ban G.: Electrochemical Treatment of Ti6Al4V. Acta Metallurgica Slovaca 3 (2010), 186-193.
  • 4. Abdolldhi Z., Ziaee A.A., Afshar A.: Investigation of titanium oxide layer in thermalelectrochemical anodizing of Ti6Al4V alloy. International Journal of Chemical and Biological Engineering 2 (2009), 44- 47.
  • 5. Brown S.A., Lemons J.E.: Medical Applications of Titanium and Its Alloys: The Material and Biological Issues. Brown S.A. [ed.], ASTM International, USA, 1996.
  • 6. Mukherjee B., Patra B., Mahapatra S., Banerjee P., Tiwari A., Chatterjee M.: Vanadium an enhancement of atypical biological significance. Toxicology Letters 150 (2004), 135-143.
  • 7. Krasicka- Cydzik E., Kowalski K., Kaczmarek A., Głazowska I., Białas- Heltowski K.: Competition between phosphates and fluorides at anodic formation of titania nanotubes on titanium. Surface and Interface Analysis 42 (2010), 471-474.
  • 8. Kaczmarek A., Klekiel T., Krasicka- Cydzik E.: Fluoride concentration effect on the anodic growth of self-aligned oxide nanotube array on Ti6Al7Nb alloy. Surface and Interface Analysis 42 (2010), 510-514.
  • 9. Dahorte S.N., Vora H.D., Pavani K., Banerjee R.: An integrated experimental and computational approach to laser surface nitriding of Ti6Al4V. Applied Surface Science 271 (2013), 141-148.
  • 10. Wu C., Ramaswamy Y., Gale D., Yang W., Xiao K., Zhang L., Yin Y., Zreiqat H.: Novel sphene coatings on Ti6Al4V for orthopedic implants using sol-gel method. Acta Biomaterialia 4 (2005), 569- 576.
  • 11. Zhang X. L., Jiang Zh. H., Yao Zh. P., Wu Zh.D.: Electrochemical study of growth behavior of plasma electrolytic oxidation coating on Ti6Al4V: Effect of the additive. Corrosion Science 52 (2010), 3465- 3476.
  • 12. Paital S.R., Dahotre N.B.: Calcium phosphate coatings for bio-implant applications: Materials, performance factors and methodologies. Materials Science and Engineering R 66 (2009), 1-70.
  • 13. Macak. J.M., Tsuchiya H., Taveira L., Ghicov A., Schmuki P.: Self- organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. Journal of Biomedical Materials Research 4 (2005), 928-933.
  • 14. Balaur E., Macak J.M., Taveira L., Schmuki P.: Tailoring the wettability of TiO2 nanotube layers.Electrochemistry Communications 7 (2005), 1066-1070.
  • 15. Grimes C.A., Mor G.K.: TiO2 Nanotubes: Synthesis, Properties and Applications. Graims C.A. [ed.], Springer, U.S.A. 2009.
  • 16. Xiao P., Garcia B.B., Guo Q., Liu D.W., Cao G.: TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing. Electrochemistry Communications 9 (2007), 2441-2447.
  • 17. Liu X., Chu P.K., Ding C.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering R 47 (2004), 49-121.
  • 18. Rehder D.: Bioinorganic Vanadium Chemistry. Wollins D. [ed.], John Willey& Sons Ltd.Chichester, UK, 2008.
  • 19. Privman M., Hepel T.: Electrochemistry of vanadium electrodes Part 1. Cyclic voltametry in aqueous solutions. Journal of Electroanalytical Chemistry 382 (1995), 137-144.
  • 20. Wu ch., Wei H., Ning B., Xie Y.: New Vanadium Oxide Nanostructures: Controlled Synthesis and Their Smart Electrical Switching Properties. Advanced Materials 22 (2010) 1972-1976.
  • 21. Jung H., Um S.: An experimental feasibility study of vanadium oxide films on metallic bipolar plates for the cold start enhancement of fuel cell vehicles. International Journal of hydrogen Energy 36 (2011), 15826-15837.
  • 22. Yang Y., Kim D., Schmuki P.: Lithium-ion intercalation and electrochromism in ordered V2O5 nanoporous layers. Electrochemistry Communications 13 (2011), 1198-1201.
  • 23. Podraza N.J., Gauntt B.D., Motyka M.A., Dickey E.C., Horn M.W.: Electrical and optical properties of sputtered amorphous vanadium oxide thin films. Journal of Applied Physics 111 (2012), 073522.
  • 24. Yang Y., Lee K., Zobel M., Maćković M., Unruh T., Spiecker E., Schmuki P.: Formation of Highly Ordered VO2 Nanotubular/ Nanoporous Layers and Their Supercooling Effect in Phase Transitions. Advanced Materials 24 (2012), 1571-1575.
  • 25. Martinez- Huerta M.V., Fierro J.L.G., Banares M.A.: Monitoring the states of vanadium during the transformation of TiO2 anatase-to-rutile reactive environments: H2 reduction and oxidative dehydrogenation of ethane. Catalysis Communications 11 (2009), 15-19.
  • 26. Yang B., Ng C.K., Fung M.K., Ling C.C., Djurisic A.B., Fung S.: Annealing study of titanium oxide nanotube arrays. Materials Chemistry and Physics 130 (2011), 1227-1231.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-812beb72-a9fe-4a00-8dc3-ea7962253daa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.