PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cellular automata modeling of cooperative eutectic growth

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The model and results of the 2D simulation of the cooperative growth of two phases in the lamellar eutectic are presented. The proposed model takes into account heat transfer, components diffusion and nonstationary concentration distribution in the liquid and solid phases, non-equlibrium nature of the phase transformation and kinetics of the growth, influence of the surface energy and interface curvature on the conditions of the thermodynamic equilibrium. For the determination of the phase interface shape the Cellular Automata technique (CA) was used. For the calculation of temperature and concentration distribution the numerical solution of the Fourier equation was used. The partial differential equations were solved by Finite Differences Method (FDM). The spatial position and cell sizes of CA lattice and FDM mesh are equal. Proposed model can predict the steady state growth with a constant interlamellar spacing in the regular plate eutectic, as well as some transient processes that bring to the changes of that parameters. Obtained simulation data show the solid-liquid interface changes result in the termination of lamella and enlargement of interlamellar spacing. Another simulation results illustrate a pocket formation in the center of one phase that forestalls nucleation (or intergrowth) of the new lamellae of another phase. The data of the solidification study of the transparent material (CBr4– 8,4% C2Cl6) obtained in the thin layer demonstrate the qualitative agreement of the simulation.
Rocznik
Strony
29--34
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Katedra Inżynierii Stopów i Kompozytów Odlewanych, Wydział Odlewnictwa, Akademia Górniczo-Hutnicza, ul. Reymonta 23, 30-059 Kraków, Polska
autor
  • Katedra Inżynierii Stopów i Kompozytów Odlewanych, Wydział Odlewnictwa, Akademia Górniczo-Hutnicza, ul. Reymonta 23, 30-059 Kraków, Polska
autor
  • Katedra Inżynierii Stopów i Kompozytów Odlewanych, Wydział Odlewnictwa, Akademia Górniczo-Hutnicza, ul. Reymonta 23, 30-059 Kraków, Polska
autor
  • Katedra Inżynierii Stopów i Kompozytów Odlewanych, Wydział Odlewnictwa, Akademia Górniczo-Hutnicza, ul. Reymonta 23, 30-059 Kraków, Polska
Bibliografia
  • [1] Chopard B., Droz M.: Cellular automata modeling of physical systems, Cambridge University Press, Cambridge, UK, (2005).
  • [2] Umantsev A.R., Vinogradov V.V., Borisov V.T.: Mathematical Modeling of the Dendrite Growth in the Undercooled Melt, Kristallografia, 30(3), (1985) pp. 455-460. (In Russian).
  • [3] Rappaz M., Gandin Ch.A.: Probabilistic Modeling of Microstructure Formation in Solidification Processes, Acta Metallurgica et Materialia, 41(2), (1993) pp. 345-360.
  • [4] Pan S., Zhu M.: A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth, Acta Materialia, 58(1), (2010) pp. 340-352.
  • [5] Mosbah S., Bellet M., Gandin Ch.A.: Simulation of Solidification Grain Structures with a Multiple Diffusion Length Scales Model, Modeling of Casting, Welding and Advanced Solidification Processes - XII, S.L. Cockcroft, D.M. Maijer eds., TMS, Vancouver, Canada, (2009) pp. 485-493.
  • [6] Guillemot G., Gandin Ch.A., Bellet M.: Interaction Between Single Grain Solidification and Macro Segregation: Application of a Cellular Automaton - Finite Element Model, Journal of Crystal Growth, 303 (1), (2007) pp. 58-68.
  • [7] Beltran-Sanchez L., Stefanescu D.M.: A Quantitative Dendrite Growth Model and Analysis of Stability Concepts, Metallurgical and Materials Transactions A, 35A(8), (2004) pp. 2471-2485.
  • [8] Pavlyk V., Dilthey U.: Simulation of Weld Solidification Microstructure and its Coupling to the Macroscopic Heat And Fluid Flow Modelling, Modelling and Simulation in Materials Science and Engineering, 12(1), (2004) pp. S33-S45.
  • [9] Zhu M.F., Hong C.P.: A Three Dimensional Modified Cellular Automaton Model for the Prediction of Solidification Microstructures, ISIJ International, 42(5), (2002) p. 520-526.
  • [10] Jarvis D.J., Brown S.G.R., Spittle J.A.: Modelling of Non-Equilibrium Solidification in Ternary Alloys: Comparison of 1D, 2D, and 3D Cellular Automaton-Finite Difference Simulations, Materials Science and Technology, 16(11-12), (2000) pp. 1420-1424.
  • [11] Burbelko A.A., Fraś E., Kapturkiewicz W.: Modelling of Dendritic Growth During Unidirectional Solidification by the Method of Cellular Automata, Materials Science Forum, 649, (2010) pp. 217-222.
  • [12] Burbelko A.A., Fraś E., Kapturkiewicz W., Olejnik E.: Nonequilibrium Kinetics of Phase Boundary Movement in Cellular Automaton Modelling, Materials Science Forum, 508, (2006) pp. 405-410.
  • [13] Brown S.G.R., Bruce N.B.: Three-Dimensional Cellular Automaton Models of Microstructural Evolution During Solidification, Journal of Materials Science, 30(5), (1995) pp. 1144-1150.
  • [14] Zhu MF., Hong CP.: Modeling of microstructure evolution in regular eutectic growth, Physical Review B, 66(15), (2002) art. No. 155428.
  • [15] Zhu M.F., Hong C.P.: Modeling of microstructure evolution in eutectic and peritectic solidification, Modeling of Casting, Welding and Advanced Solidification Processes - X, D.M. Stefanescu, J.A. Warren, M.R. Jolly, M.J.M. Krane eds., TMS, Warrendale, Pennsylvania, (2003) pp. 91-98.
  • [16] Zhu M.F., Hong C.P., Stefanescu D.M., Chang, Y.A.: Computational modeling of microstructure evolution in solidification of aluminum alloys, Metall. Mater. Trans. B, 38B(4), (2007) pp. 517-524.
  • [17] Jackson K.A., Hunt J.D.: Lamellar and rod eutectic growth. Trans. Metal. Soc. AimE, 236, (1966), 1129-1142.
  • [18] Dantzig J.A., Rappaz M.: Solidification, EPFL Press, (2009) Lausanne.
  • [19] Karma A., Sarkissian A.: Morphological instabilities of Lammelar Eutectics. Met. and Mater. Trans. A, 27A, (1996), 635-656.
  • [20] Chalmers B.: Principles of Solidification. John Wiley, New York, 1964.
  • [21] Hoyt J., Asta M.: Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag, Phys. Rev. B., 65, (2002) art. No. 214106, 1–11.
  • [22] Burbelko, A.: Mezomodeling of Solidification Using a Cellular Automaton, UWND AGH, (2004) Krakow (in Polish).
  • [23] Dilthley U., Pavlik V.: Numerical simulation of dendrite morphology and grain growth with modified cellular automata, Modeling of Casting, Welding and Advanced Solidification Processes VIII, B.G. Thomas and C. Beckermann eds., TMS, Warrendale, (1998) pp. 589-596.
  • [24] Burbelko A.A., Kapturkiewicz W., Gurgul D.: Analysis of causes and means to reduce artificial anisotropy in modelling of the solidification process on cellular automaton, Solidification Processing 2007: Proceedings of the 5th Decennial International Conference on Solidification Processing. H. Jones eds., The University of Sheffield, UK, (2007) pp. 31-35.
  • [25] Kubashewski O.: Iron – Binary Phase Diagrams. Springer-Verlag, Berlin, 1982.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8129aadf-6e0e-49a1-b841-3d4ab75d2bc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.