Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider a history-dependent problem which describes the contact between an elastic body and an obstacle, the so-called foundation. The contact is frictionless and is modeled with a version of the normal compliance condition in which the memory effects are taken into account. The mathematical analysis of the problem, including existence, uniqueness and convergence results, was provided in (Barboteu et al., in preparation). Here we present the analytic expression of the solution and numerical simulations, in the study of one and two-dimensional examples, respectively.
Czasopismo
Rocznik
Tom
Strony
24--34
Opis fizyczny
Bibliogr. 8 poz., wykr.
Twórcy
autor
- Universite de Perpignan, France
autor
- Universite de Perpignan, France
autor
- Universite de Perpignan, France
autor
- Tiberiu Popoviciu Institute of Numerical Analysis, Cluj-Napoca, Romania flavius
Bibliografia
- Alart, P., Curnier, A., 1991, A mixed formulation for frictional contact problems prone to Newton like solution methods, Computer Methods in Applied Mechanics and Engineering, 92, 353-375.
- Barboteu, M., Patrulescu, F., Sofonea, M., Analysis of a contact problem with normal compliance and memory term, in preparation.
- Han, W., Sofonea M., 2002, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, 30, American Mathematical Society- International Press, Sommerville, MA.
- Laursen, Т., 2002, Computational Contact and Impact Mechanics, Springer, Berlin.
- Patrulescu, F., 2012, Ordinary Differential Equations and Contact Problems: Modeling, Analysis and Numerical Methods, Ph.D. Thesis, University Babes-Bolyai Cluj-Napoca and University of Perpignan Via Domitia.
- Shillor, M., Sofonea, M., Telega, J. J., 2004, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, 655, Springer, Berlin.
- Sofonea, M., Matei, A., 2011, History-dependent quasivariational inequalities arising in Contact Mechanics, European Journal of Applied Mathematics, 22, 471-491.
- Sofonea, M., Matei А., 2012, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge. Wriggers, P., 2002, Computational Contact Mechanics, Wiley, Chichester.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8127d97f-c34b-4adb-a6a3-5a6759ed83dd