PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Elastic Contact Problem with Normal Compliance and Memory Term

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a history-dependent problem which describes the contact between an elastic body and an obstacle, the so-called foundation. The contact is frictionless and is modeled with a version of the normal compliance condition in which the memory effects are taken into account. The mathematical analysis of the problem, including existence, uniqueness and convergence results, was provided in (Barboteu et al., in preparation). Here we present the analytic expression of the solution and numerical simulations, in the study of one and two-dimensional examples, respectively.
Rocznik
Strony
24--34
Opis fizyczny
Bibliogr. 8 poz., wykr.
Twórcy
autor
  • Universite de Perpignan, France
autor
  • Universite de Perpignan, France
  • Universite de Perpignan, France
  • Tiberiu Popoviciu Institute of Numerical Analysis, Cluj-Napoca, Romania flavius
Bibliografia
  • Alart, P., Curnier, A., 1991, A mixed formulation for frictional contact problems prone to Newton like solution methods, Computer Methods in Applied Mechanics and Engineering, 92, 353-375.
  • Barboteu, M., Patrulescu, F., Sofonea, M., Analysis of a contact problem with normal compliance and memory term, in preparation.
  • Han, W., Sofonea M., 2002, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, 30, American Mathematical Society- International Press, Sommerville, MA.
  • Laursen, Т., 2002, Computational Contact and Impact Mechanics, Springer, Berlin.
  • Patrulescu, F., 2012, Ordinary Differential Equations and Contact Problems: Modeling, Analysis and Numerical Methods, Ph.D. Thesis, University Babes-Bolyai Cluj-Napoca and University of Perpignan Via Domitia.
  • Shillor, M., Sofonea, M., Telega, J. J., 2004, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, 655, Springer, Berlin.
  • Sofonea, M., Matei, A., 2011, History-dependent quasivariational inequalities arising in Contact Mechanics, European Journal of Applied Mathematics, 22, 471-491.
  • Sofonea, M., Matei А., 2012, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge. Wriggers, P., 2002, Computational Contact Mechanics, Wiley, Chichester.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8127d97f-c34b-4adb-a6a3-5a6759ed83dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.