PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Importance of bacteria and protozooplankton for faecal pellet degradation

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The degradation mechanisms of faecal pellets are still poorly understood, although they determine their contribution to vertical fluxes of carbon. The aim of this study was to attempt to understand the microbial (bacteria and protozooplankton) degradation of faecal pellets by measuring the faecal pellet carbon-specific degradation rate (FP-CSD) as an indicator of pellet degradation. "In situ" and "culture" pellets (provided by the grazing of copepods in in situ water and in a culture of Rhodomonas sp. respectively) were incubated in seawater from the chlorophyll a maximum and 90 m depth, and in filtered seawater. When microbes were abundant (at the chlorophyll a maximum), they significantly increased FP-CSD. In addition, culture pellets had a higher FP-CSD than in situ pellets, suggesting that the results obtained with culture pellets should be treated with caution when trying to extrapolate to natural field conditions.
Słowa kluczowe
Czasopismo
Rocznik
Strony
565--581
Opis fizyczny
Bibliogr. 70 poz., wykr.
Twórcy
autor
  • Department of Arctic and Marine Biology, University of Tromsø, N-9037 Tromsø, Norway
  • Lemar CNRS UMR 6539, Rue Dumont D'Urville, 29280 Plouzané, France
autor
  • Department of Arctic and Marine Biology, University of Tromsø, N-9037 Tromsø, Norway
Bibliografia
  • [1]. Arrigo K., van Dijken G., Pabi S., 2008, Impact of a shrinking Arctic ice cover on marine primary production, Geophys. Res. Lett., 35 (19), L19603, http://dx.doi.org/10.1029/2008GL035028
  • [2]. Błachowiak-Samołyk K., Soreide J. E., Kwaśniewski S., Sundfjord A., Hop H., Falk- Petersen S., Hegseth E. N., 2008, Hydrodynamic control of mesozooplankton abundance and biomass in northern Svalbard waters, Deep-Sea Res. Pt. II, 55 (20-21), 2210-2224, http://dx.doi.org/10.1016/j.dsr2.2008.05.018
  • [3]. Broms C., Melle W., Kaartvedt S., 2009, Oceanic distribution and life cycle of Calanus species in the Norwegian Sea and adjacent waters, Deep-Sea Res. Pt. II, 56, 1910-1921, http://dx.doi.org/10.1016/j.dsr2.2008.11.005
  • [4]. Calbert A., Landry M. R., 2004, Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems, Limnol. Oceanogr., 49 (1), 51-67, http://dx.doi.org/10.4319/lo.2004.49.1.0051
  • [5]. Carroll M. L., Carroll J., 2003, The Arctic Seas, [in:] Biogeochemistry of marine systems, K. D. Black & G. B. Shimmield (eds.), Blackwell Publ., Oxford, 126-156.
  • [6]. Checkley D. M. J., Entzeroth L. C., 1985, Elemental and isotopic fractionation of carbon and nitrogen by marine, planktonic copepods and implications to the marine nitrogen cycle, J. Plankton Res., 7 (4), 533-568, http://dx.doi.org/10.1093/plankt/7.4.553
  • [7]. Cimbleris A. C. P., Kalf J., 1998, Planktonic bacterial respiration as a function of C:N:P ratios across temperate lakes, Hydrobiologia, 384 (1-3), 89-100, http://dx.doi.org/10.1023/A:1003496815969
  • [8]. Conover R., 1988, Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the Northern Hemisphere, Hydrobiologia, 167-168 (1), 127-142, http://dx.doi.org/10.1007/BF00026299
  • [9]. Dagg M. J., Walser W. E. J., 1986, The effect of food concentration on fecal pellet size in marine copepods, Limnol. Oceanogr., 31 (5), 1066-1071, http://dx.doi.org/10.4319/lo.1986.31.5.1066
  • [10]. Daly K. L., 1997, Flux of particulate matter through copepods in the Northeast Water Polynya, J. Marine Syst., 10 (1-4), 319-342, http://dx.doi.org/10.1016/S0924-7963(96)00062-0
  • [11]. Froneman P. W., Perissinotto R., 1996, Microzooplankton grazing and protozooplankton community structure in the South Atlantic and in the Atlantic sector of the Southern Ocean, Deep-Sea Res. Pt. I, 43 (5), 703-721, http://dx.doi.org/10.1016/0967-0637(96)00010-6
  • [12]. Fukami K., Simidu U., Taga N., 1981, Fluctuation of the communities of heterotrophic bacteria during the decomposition process of phytoplankton, J. Exp. Mar. Biol. Ecol., 55 (2-3), 171-184, http://dx.doi.org/10.1016/0022-0981(81)90110-6
  • [13]. Gowing M. M., Silver M. V., 1983, Origins and microenvironment of bacteria mediating fecal pellet decomposition in the sea, Mar. Biol., 73, 15-23, http://dx.doi.org/10.1007/BF00396280
  • [14]. Halvorsen E., Tande K. S., Edvardsen A., Slagstad D., Pedersen O. P., 2003, Habitat selection of overwintering Calanus finmarchicus in the NE Norwegian Sea and shelf waters off Northern Norway in 2000-02, Fish. Oceanogr., 12 (4-5), 339-351, http://dx.doi.org/10.1046/j.1365-2419.2003.00255.x
  • [15]. Hansen B., Bech G., 1996, Bacteria associated with a marine planktonic copepod in culture. 1. Bacterial genera in seawater, body surface, intestines and fecal pellets and succession during fecal pellet degradation, J. Plankton Res., 18 (2), 257-273, http://dx.doi.org/10.1093/plankt/18.2.257
  • [16]. Hansen B., Fotel F. L., Jensen N. J., Madsen S. D., 1996, Bacteria associated with a marine planktonic copepod in culture. 2. Degradation of fecal pellets produced on a diatom, a nanoflagellate or a dinoflagellate diet, J. Plankton Res., 18 (2), 275-288, http://dx.doi.org/10.1093/plankt/18.2.275
  • [17]. Hansen A. S., Nielsen T. G., Levinsen H., Madsen S. D., Thingstad T. F., Hansen B. W., 2003, Impact of changing ice cover on pelagic productivity and food web structure in Disko Bay, West Greenland: a dynamic model approach, Deep-Sea Res. Pt. I, 50 (2), 171-187, http://dx.doi.org/10.1016/S0967-0637(02)00133-4
  • [18]. Hirche H. J., Mumm N., 1992, Distribution of Dominant Copepods in the Nansen Basin, Arctic-Ocean, in Summer, Deep-Sea Res. Pt. I, 39 (2 Pt. 1), S485-S505, http://dx.doi.org/10.1016/S0198-0149(06)80017-8
  • [19]. Hirche H. J., 1991, Distribution of dominant calanoid copepod species in the Greenland Sea during late fall, Polar Biol., 11 (6), 11-17, http://dx.doi.org/10.1007/BF00239687
  • [20]. Honjo S., Roman M. R., 1978, Marine copepod fecal pellets: production, preservation and sedimentation, J. Marine Syst., 36, 45-57.
  • [21]. Iversen M. H., Poulsen L. K., 2007, Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona similis, Mar. Ecol.-Prog. Ser., 350, 79-89, http://dx.doi.org/10.3354/meps07095
  • [22]. Jacobsen T. R., Azam F., 1984, Role of bacteria in copepod fecal pellet decomposition: colonization, growth rates and mineralization, Bull. Mar. Sci., 35, 495-502.
  • [23]. Lalande C., Bauerfeind E., Nöthig E. M., 2011, Downward particulate organic carbon export at high temporal resolution in the eastern Fram Strait: influence of Atlantic Water on flux composition, Mar. Ecol.-Prog. Ser., 440, 127-136, http://dx.doi.org/10.3354/meps09385
  • [24]. Lampitt R. S., No ji T., von Bodungen B., 1990, What happens to zooplankton faecal pellets? Implications for material flux, Mar. Biol., 104, 15-23, http://dx.doi.org/10.1007/BF01313152
  • [25]. Lane P. V. Z., Smith S. L., Biscay P. E., 1994, Carbon flux and recycling associated with zooplankton fecal pellets on the shell of the Middle Atlantic Bight, Deep Sea Res. Pt. II, 41, 437-457, http://dx.doi.org/10.1016/0967-0645(94)90031-0
  • [26]. Levinsen H., Turner J. T., Nielsen T. G., Hansen B. W., 2000, On the trophic coupling between protists and copepods in arctic marine ecosystems, Mar. Ecol.- Prog. Ser., 204, 65-77, http://dx.doi.org/10.3354/meps204065
  • [27]. Madsen S., Nielsen T., Hansen B., 2001, Annual population development and production by Calanus finmarchicus, C. glacialis and C. hyperboreus in Disko Bay, western Greenland, Mar. Biol., 139, 75-93, http://dx.doi.org/10.1007/s002270100552
  • [28]. Müller E. F., Thor P., Nielsen T. G., 2003, Production of DOC by Calanus finmarchicus, C. glacialis and C. hyperboreus through sloppy feeding and leakage from fecal pellets, Mar. Ecol.-Prog. Ser., 262, 185-191, http://dx.doi.org/10.3354/meps262185
  • [29]. No ji T. T., 1991, The influence of macrozooplankton on vertical particulate flux, Sarsia, 76, 1-9.
  • [30]. No ji T. T., Rey F., Miller L. A., Borsheim K. Y., Urban-Rich J., 1999, Fate of biogenic carbon in the upper 200 m of the central Greenland Sea, Deep-Sea Res. Pt. II, 46, 1497-1509, http://dx.doi.org/10.1016/S0967-0645(99)00032-6
  • [31]. Olli K., Wassmann P., Reigstad M., Ratkova T. N., Arashkevich E., Pasternak A., Matra P. A., Knulst J., Tranvik L., Klais R., Jacobsen A., 2007, The fate of production in the central Arctic Ocean - top-down regulation by zooplankton expatriates?, Prog. Oceanogr., 72, 84-113, http://dx.doi.org/10.1016/j.pocean.2006.08.002
  • [32]. Olli K., Wexels Riser C., Wassmann P., Ratkova T., Arashkevich E., Pasternak A., 2002, Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea, J. Marine Syst., 38, 189-204, http://dx.doi.org/10.1016/S0924-7963(02)00177-X
  • [33]. Olsen S. N., Westh P., Hansen B. W., 2005, Real-time quantification of microbial degradation of copepod fecal pellets monitored by isothermal microcalorimetry, Aquat. Microb. Ecol., 40, 259-267, http://dx.doi.org/10.3354/ame040259
  • [34]. Paffenhöfer G.-A., Knowles S. C., 1979, Ecological implications of fecal pellet size, production and consumption by copepods, J. Marine Syst., 37, 35-49.
  • [35]. Petersen G. H., Curtis M. A., 1980, Differences in energy flow through major components of subarctic, temperate and tropical marine shelf ecosystems, Dana, 1, 53-64.
  • [36]. Pilskaln C. H., Honjo S., 1987, The fecal pellet fraction of biogeochemical particle fluxes to the deep-sea, Glob. Biogeoch. Cy., 1, 31-48, http://dx.doi.org/10.1029/GB001i001p00031
  • [37]. Ploug H., Iversen M. H., Koski M., Buitenhuis E. T., 2008, Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite, Limnol. Oceanogr., 53 (2), 469-476, http://dx.doi.org/10.4319/lo.2008.53.2.0469
  • [38]. Porter K. G., Feig Y. S., 1980, The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr., 25 (5), 943-948, http://dx.doi.org/10.4319/lo.1980.25.5.0943
  • [39]. Poulsen L. K., Iversen M. H., 2008, Degradation of copepod fecal pellets: key role of protozooplankton, Mar. Ecol.-Progr. Ser., 367, 1-13, http://dx.doi.org/10.3354/meps07611
  • [40]. Poulsen L. K., Kiorboe T., 2006, Vertical flux and degradation rates of copepod fecal pellets in a zooplankton community dominated by small copepods, Mar. Ecol.-Prog. Ser., 323, 195-204, http://dx.doi.org/10.3354/meps323195
  • [41]. Reigstad M., Wexels-Riser C., Svensen C., 2005, Fate of copepod faecal pellets and the role of Oithona spp., Mar. Ecol.-Prog. Ser., 304, 265-270, http://dx.doi.org/10.3354/meps304265
  • [42]. Renaud P. E., Riedel A., Michel C., Morata N., Gosselin M., Juul-Pedersen T., Chiuchiolo A., 2007, Seasonal variation in benthic community oxygen demand: A response to an ice algal bloom in the Beaufort Sea, Canadian Arctic?, J. Marine Syst., 67 (1-2), 1-12, http://dx.doi.org/10.1016/j.jmarsys.2006.07.006
  • [43]. Rivkin R. B., Legendre L., 2001, Biogenic carbon cycling in the upper ocean: effects of microbial respiration, Science, 291 (5512), 2398-2400, http://dx.doi.org/10.1126/science.291.5512.2398
  • [44]. Roy S., Poulet S. A., 1990, Laboratory study of the chemical composition of aging copepod fecal material, J. Exp. Biol. Ecol., 135 (1), 3-18, http://dx.doi.org/10.1016/0022-0981(90)90195-I
  • [45]. Seuthe L., Rokkan Iversen K., Narcy F., 2011, Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates, Polar Biol., 34 (5), 751-766, http://dx.doi.org/10.1007/s00300-010-0930-9
  • [46]. Shinada A., Ikeda T., Tsuda A., 2001, Seasonal variation and spatial distribution of phyto- and protozooplankton in the central Barents Sea, J. Plankton Res., 23 (11), 1237-1247, http://dx.doi.org/10.1093/plankt/23.11.1237
  • [47]. Shek L., Liu H., 2010, Oxygen consumption rates of fecal pellets produced by three coastal copepod species fed with a diatom Thalassiosira pseudonana, Mar. Pollut. Bull., 60 (7), 1005-1009, http://dx.doi.org/10.1016/j.marpolbul.2010.02.001
  • [48]. Sherr E. B., Sherr B. F., Wheeler P. A., Thompson K., 2003, Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean, Deep-Sea Res. Pt. I, 50 (5), 557-571, http://dx.doi.org/10.1016/S0967-0637(03)00031-1
  • [49]. Slagstad D., Tande K. S., 1990, Growth and production dynamics of Calanus glacialis in an arctic pelagic food web, Mar. Ecol.-Prog. Ser., 63, 189-199, http://dx.doi.org/10.3354/meps063189
  • [50]. Small L. F., Landry M. R., Eppley R. W., Azam F., Carlucci A. F., 1989, Role of plankton in the carbon and nitrogen budgets of Santa Monica Basin, California, Mar. Ecol.-Prog. Ser., 56, 57-74, http://dx.doi.org/10.3354/meps056057
  • [51]. Soreide J. E., Falk-Petersen S., Hegseth E. N., Hop H., Carroll M. L., Hobson K. A., Błachowiak-Samołyk K., 2008, Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region, Deep Sea Res. Pt. II, 55 (20-21), 2225-2244, http://dx.doi.org/10.1016/j.dsr2.2008.05.024
  • [52]. Svensen C., Wexels Riser C., Reigstad M., Seuthe L., 2012, Degradation of copepod faecal pellets: role of microbial community and Calanus finmarchichus, Mar. Ecol.-Prog. Ser., 462, 39-49, http://dx.doi.org/10.3354/meps09808
  • [53]. Swift J. H., Aagaard K., 1981, Seasonal transitions and water mass formation in the Iceland and Greenland Sea, Deep-Sea Res. Pt. I, 28, 1107-1129, http://dx.doi.org/10.1016/0198-0149(81)90050-9
  • [54]. Tang K., 2005, Copepods as microbial hotspots in the ocean: effects of host feeding activities on attached bacteria, Aquat. Microbiol. Ecol., 38, 31-40, http://dx.doi.org/10.3354/ame038031
  • [55]. Tang K., Dzillas C., Hutalle-Schmelzer K., Grossart H. P., 2009, Effects of food on bacterial community composition associated with the copepod Acartia tonsa Dana, Biol. Letters, 5, 549-553, http://dx.doi.org/10.1098/rsbl.2009.0076
  • [56]. Takahashi K., Nagao N., Taguchi S., 2002, Respiration of adult female Calanus hyperboreus (Copepoda) during spring in the North Water Polynya, Polar Biosci., 15, 45-51. Thor P., Dam H., Rogers D. R., 2003, Fate of organic carbon released from decomposing copepod fecal pellets in relation to bacterial production and ectoenzymatic activity, Aquat. Microb. Ecol., 33 (3), 279-288, http://dx.doi.org/10.3354/ame033279
  • [57]. Turner J. T., 1979, Microbial attachment to copepod faecal pellets and its possible significance, T. Am. Microsc. Soc., 98 (1), 131-135, http://dx.doi.org/10.2307/3225949
  • [58]. Turner J. T., 2002, Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms, Aquat. Microb. Ecol., 27, 57-102, http://dx.doi.org/10.3354/ame027057
  • [59]. Urban-Rich J., 1999, Release of dissolved organic carbon from copepod fecal pellets in the Greenland Sea, J. Exp. Biol. Ecol., 232, 107-124, http://dx.doi.org/10.1016/S0022-0981(98)00104-X
  • [60]. Urban-Rich J., Nordby E., Andreassen I. J., Wassmann P., 1999, Contribution by mesozooplankton fecal pellets to the carbon flux on Nordvestbanken, north Norwegian shelf in 1994, Sarsia, 84, 253-264.
  • [61]. Urban J. L., Deibel D., Schwinghamer P., 1993, Seasonal variations in the densities of fecal pellets produced by Oikopleura vanhoeffeni (C. Larvacea) and Calanus finmarchicus (C. Copepoda), Mar. Biol., 117, 607-613, http://dx.doi.org/10.1007/BF00349772
  • [62]. Urrère M. A., Knauer G. A., 1981, Zooplankton fecal pellet fluxes and vertical transport of particulate organic material in the pelagic environment, J. Plankton Res., 3, 369-387, http://dx.doi.org/10.1093/plankt/3.3.369
  • [63]. von Bodungen B., Antia A., Bauerfeind E., Haupt O., Koeve W., Machado E., Peeken I., Peinert R., Reitmeier S., Thomsen C., Voss M., Wunsch M., Zeller U., Zeitzschel B., 1995, Pelagic processes and vertical flux of particles: an overview of a long-term comparative study in the Norwegian Sea and Greenland Sea, Geol. Rundsch., 84 (1), 11-27, http://dx.doi.org/10.1007/BF00192239
  • [64]. von Bodungen B., Fischer G., Nöthig E. M., Wefer G., 1987, Sedimentation of krill faeces during spring development of phytoplankton in Bransfield Strait, Antarctica, Mitt. Geol. Palaönt. Inst. Univ. Hamburg, SCOPE/UNEP Sonderbd., 62, 243-257.
  • [65]. Wassmann P., Reigstad M., Haug T., Rudels B., Carroll M. L., Hop H., Gabrielsen G. W., Falk-Petersen S., Denisenko S. G., Arashkevich E., Slagstad D., Pavlova O., 2006, Food webs and carbon flux in the Barents Sea, Prog. Oceanogr., 71, 232-287, http://dx.doi.org/10.1016/j.pocean.2006.10.003
  • [66]. Wassmann P., Hansen L., Andreassen I., Wexels Riser C., Urban-Rich J., 1999, Distribution and sedimentation of faecal pellets on the Nordvestbanken shelf, northern Norway, in 1994, Sarsia, 84, 239-252.
  • [67]. Wexels Riser C., Wassmann P., Reigstad M., Seuthe L., 2008, Vertical flux regulation by zooplankton in the northern Barents Sea during Arctic spring, Deep-Sea Res. Pt. II, 55, 2320-2329, http://dx.doi.org/10.1016/j.dsr2.2008.05.006
  • [68]. Wiebe P. H., Madin L. P., Haury L. R., Harbison G. R., Philbin L. M., 1979, Diel vertical migration by Salpa aspera and its potential for large-scale particulate organic matter transport to the deep-sea, Mar. Biol., 53, 249-255, http://dx.doi.org/10.1007/BF00952433
  • [69]. Yang E. J., Ju S. J., Choi J. K., 2010, Feeding strategy of the copepod Acartia hongi on phytoplankton and micro-zooplankton in Gyeonggi Bay, Yellow Sea, Estuar. Coast. Shelf Sci., 88 (2), 292-301, http://dx.doi.org/10.1016/j.ecss.2010.04.005
  • [70]. Zhang J., Rothrock D. A., Steele M., 1998, Warming of the Arctic Ocean by a strengthened Atlantic inflow: Model results, Geophys. Res. Lett., 25 (10), 1745-1748, http://dx.doi.org/10.1029/98GL01299
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8124ccb7-a7de-4c30-ba52-b56e3cc8a073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.