Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Additive manufacturing is a technology that can be successfully used in pharmacy and medicine. One of the examples of products that can be additively manufactured are microneedle systems. The specificity of these products, which are used for transdermal drug delivery, makes additive manufacturing a perfect choice for related research. However, the dimensions of microneedles usually do not exceed 2 mm, which means that manufacturing them using the most widely available additive manufacturing method, Fused Deposition Modelling (FDM), is problematic. In this study, the authors decided to investigate the possibilities of manufacturing microneedle systems using the FDM method in such a way as to minimize or exclude the need for post-processing. Five types of microneedle geometries were tested in four sizes, examining how changing the values of FDM process parameters would affect the accuracy of reproducing the digital geometry of the microneedles. From the point of view of the application of microneedle systems, it is not only necessary to obtain the designed shape of the microneedles, but also to maintain their appropriate strength. The study presents the results of the bending and compression strength of microneedles made of polylactic acid.
Wydawca
Rocznik
Tom
Strony
116--126
Opis fizyczny
Bibliogr. 21 poz., fig.
Twórcy
autor
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 5 M. Skłodowska-Curie Square, 60-965 Poznan, Poland
autor
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 5 M. Skłodowska-Curie Square, 60-965 Poznan, Poland
autor
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
autor
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
autor
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
autor
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
autor
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
Bibliografia
- 1. N. Roxhed, B. Samel, L. Nordquist, P. Griss and G. Stemme, Painless drug delivery through mi¬croneedle-based transdermal patches featuring ac¬tive infusion. In: IEEE Transactions on Biomedical Engineering, 2008, 55, 3, 1063-1071. doi: 10.1109/ TBME.2007.906492.
- 2. Cano-Vicent, A.; Tambuwala, M.M.; Hassan, S.S.; Barh, D.; Aljabali, A.A.A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, Á. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit. Manuf. 2021, 47, 102378.
- 3. Górski, F.; Wichniarek, R.; Kuczko, W.; Żukowska, M. Study on Properties of Automatically Designed 3D-Printed Customized Prosthetic Sockets. Materials 2021, 14, 5240. https://doi.org/10.3390/ma14185240
- 4. Górski F., Kuczko W., Weiss W., Wichniarek R., Żukowska M. Prototyping of an Individualized Multi-Material Wrist Orthosis using Fused De¬position Modelling. Advances in Science and Technology Research Journal. 2019;13(4):39-47. doi:10.12913/22998624/113543.
- 5. Lima, A.L., et al. Extrusion-based systems for topi¬cal and transdermal drug delivery. Expert Opinion on Drug Delivery (2023): 1-14.
- 6. Yang, Q., Zhong, W., Xu, L., Li, H., Yan, Q., She, Y., & Yang, G. Recent progress of 3D-printed mi¬croneedles for transdermal drug delivery. Interna¬tional Journal of Pharmaceutics, 2021, 593, 120106.
- 7. Gorkem Buyukgoz, G., Kossor, C.G., Ji, S., Guven¬diren, M., & Davé, R.N. Dose titration of solid dos¬age forms via FDM 3D-printed mini-tablets. Phar¬maceutics, 2022, 14(11), 2305.
- 8. Tang, T.O., Holmes, S., Dean, K., & Simon, G.P. Design and fabrication of transdermal drug deliv¬ery patch with milliprojections using material ex¬trusion 3D printing. Journal of Applied Polymer Science, 2020, 137(23), 48777.
- 9. Luzuriaga, M.A., Berry, D.R., Reagan, J.C., Smal¬done, R.A., & Gassensmith, J.J. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab on a Chip, 2018, 18(8), 1223-1230.
- 10. Camović, M., Biščević, A., Brčić, I., Borčak, K., Bušatlić, S., Ćenanović, N., ... & Vranić, E. (). Coat¬ed 3d printed PLA microneedles as transdermal drug delivery systems. In: CMBEBIH 2019: Proceedings of the International Conference on Medical and Biological Engineering, 16 ̶ 18 May 2019, Banja Luka, Bosnia and Herzegovina, Springer Interna¬tional Publishing, 2020, pp. 735-742.
- 11. Wu, L., Park, J., Kamaki, Y., & Kim, B. Op¬timization of the fused deposition modeling-based fabrication process for polylactic acid mi¬croneedles. Microsystems & Nanoengineering, 2021, 7(1), 58.
- 12. He X., Sun J., Zhuang J., Xu H., Liu Y., Wu D. Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects. Dose Response. 2019, 17(4), 1559325819878585. doi: 10.1177/1559325819878585.
- 13. Jung J.H., Jin S.G. Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Investig. 2021;51(5):503-517. doi: 10.1007/ s40005-021-00512-4.
- 14. Zhao, Z., Chen, Y., & Shi, Y. (2020). Microneedles: A potential strategy in transdermal delivery and ap¬plication in the management of psoriasis. Rsc Ad¬vances, 10(24), 14040-14049.
- 15. Subramaniam, S.R., Samykano, M., Selvamani, S.K., Ngui, W.K., Kadirgama, K., Sudhakar, K., & Idris, M. S. (2019, January). 3D printing: Overview of PLA progress. In: AIP conference proceedings. AIP Publishing, Vol. 2059, No. 1.
- 16. Wang, W., Zhang, B., Li, M., Li, J., Zhang, C., Han, Y., ... & Zhang, X. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Composites Part B: Engineering, 2021, 224, 109192.
- 17. Yao, T., Deng, Z., Zhang, K., & Li, S. A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different print¬ing orientations. Composites Part B: Engineering, 2019, 163, 393-402.
- 18. Yao, T., Ye, J., Deng, Z., Zhang, K., Ma, Y., & Ouy¬ang, H. Tensile failure strength and separation angle of FDM 3D printing PLA material: Experimental and theoretical analyses. Composites Part B: Engi¬neering, 2020, 188, 107894.
- 19. Detamornrat, U., McAlister, E., Hutton, A.R., Lar¬rañeta, E., & Donnelly, R.F. The role of 3D printing technology in microengineering of microneedles. Small, 2022, 18(18), 2106392.
- 20. Rezapour Sarabi, M., Alseed, M.M., Karagoz, A.A., & Tasoglu, S. Machine learning-enabled prediction of 3D-printed microneedle features. Biosensors, 2022, 12(7), 491.
- 21. Mdanda, S., Ubanako, P., Kondiah, P.P., Kumar, P., & Choonara, Y.E. Recent advances in microneedle platforms for transdermal drug delivery technolo¬gies. Polymers, 2021, 13(15), 2405.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8124795e-879e-4e7a-ba69-01d51a4410b6