PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Microbial Fuel Cell With Cu-B Cathode Powering With Wastewater From Yeast Production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the increasing standard of living, energy consumption increases as well. So, waste production, including wastewater, increases as well. One of the types of wastewater is wastewater from yeast industry. Wastewater from this industry has not only a high pollutants load but it is produced in great amounts as well. Technical devices that can accomplish the wastewater treatment and electricity production from wastewater is a microbial fuel cell. In microbial fuel cells activated sludge bacteria can be used for electricity production during wastewater treatment. The possibility of using the Cu-B alloy as cathode catalyst for microbial fuel cells to wastewater treatment of wastewater from yeast industry is presented in this paper. The reduction time for COD with the use of microbial fuel cell with the Cu-B catalyst (with 5, 10 and 15% amount of B) is similar to the reduction time with aeration. The obtained power (4.1 mW) and the amount of energy (0.93 Wh) are low. But, if one can accept a longer COD reduction time, the obtained amount of energy will allow elimination of the energy needed for reactor aeration.
Rocznik
Strony
224--230
Opis fizyczny
BIbliogr. 35 poz., rys.
Twórcy
  • University of Opole, Faculty of Natural Sciences and Technology, Department of Process Engineering, Dmowskie-go St. 7-9, 45-365 Opole, Poland
  • University of Opole, Faculty of Natural Sciences and Technology, Department of Process Engineering, Dmowskie-go St. 7-9, 45-365 Opole, Poland
Bibliografia
  • 1. Angenent L.T., Karima K., Al-Dahhan M.H., Wrenn B.A., Domíguez-Espinosa R. 2004. The wastewater from yeast factory was used in measurements. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22 (9), 477–485.
  • 2. Berk R.S., Canfield J.H., Bioelectrochemical energy conversion. Appl. Microbiol., 12 pp.10–12 (1964).
  • 3. Bockris J.O.M., Reddy A.K.N. 2000. Modern electrochemistry. New York: Kulwer Academic /Plenum Publishers.
  • 4. Bond D.R., Lovley D.R. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 69, 1548–1555.
  • 5. Brendecke J., Axelson R., Pepper I., 1993. Soil microbial activity as an indicator of soil fertility: Long-term effects of municipal sewage sludge on an arid soil. Soil Biology and Biochemistry, 25 (6), 751–758.
  • 6. Chaudhuri S.K., Lovley D.R. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 21, 1229–1232.
  • 7. Cheng S., Hong Liu H., Logan B.E. 2006. Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells. Environ. Sci. Technol., 40(1), 364–369. DOI:10.1021/es0512071
  • 8. Davis J.B., Yarbrough H.F. 1962. Preliminary experiments on a microbial fuel cell. Science, 137, 615–616.
  • 9. Dumas C., Mollica A., Féron D., Basséguy R., Etcheverry L., Bergel A. 2006. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials. Electrochimica Acta, 53(2), 468–473. DOI:10.1016/j.electacta.2007.06.069
  • 10. Huggins T., Fallgren P.H., Jin S., Ren Z.J., 2013. Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater. J. Microb. Biochem. Technol., S6:002. DOI:10.4172/1948–5948.S6–002.
  • 11. Logan, B.E. 2008. Microbial fuel cell. Wiley & Sons.
  • 12. Logan B.E., Hamelers B., Rozendal R., Schroder U., Keller J., Verstraete W., Rabaey K. 2006. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol., 40(17), 5181–5192. DOI:10.1021/es0605016
  • 13. Kim H.J., Park H.S., Hyun M.S., Chang I.S., Kim M., Kim B.H. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians. Enzyme The use of wastewater from spirit and yeast industry in agriculture Microbiol. Technol., 30, 145–152.
  • 14. Kobya M., Delipinar S., 2008. Treatment of the baker’s yeast wastewater by electrocoagulation. Journal of Hazardous Materials, 154 (1–3), 1133–1140.
  • 15. Kutera J., 1986. Use of wastewater from spirit and yeast industry in agriculture (in Polish). Falenty. Instructional materials IMUZ (52).
  • 16. Martin E., Tartakovsky B., Oumarou Savadogo O. 2011. Cathode materials evaluation in microbial fuel cells: A comparison of carbon, Mn2O3, Fe2O3 and platinum materials. Electrochimica Acta, 58, 58–66. DOI:10.1016/j.electacta.2011.08.078
  • 17. Nowak A.J., Królik D., Kostecki J., 2013. Wastewater treatment in constructed wetlands. Civil and Environmental Engineering Reports, 11, 93–99.
  • 18. Park H.S., Kim B.H., Kim H.S., Kim H.J., Kim G.T., Kim M., Chang I.S., Park Y.K., Chang H.I. 2001. A novel electrochemically active and Fe(III)- reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 7, 297–306.
  • 19. Pham C.A., Jung S.J., Phung N.T., Lee J., Chang I.S., Kim B.H., Yi H., Chun J. 2003. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from amicrobial fuel cell. FEMS Microbiol. Lett., 223, 129–134. DOI: 10.1016/ S0378–1097(03)00354–9
  • 20. Płuciennik-Koropczuk E., Sadecka Z., Myszograj S., 2013. COD fractions in raw and mechanically treated wastewater. Civil and Environmental Engineering Reports, 11, 101–113.
  • 21. Rabaey K., Verstraete W. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 23, 291–298.
  • 22. Thornton I. (scienticic co-ordinator), 2001. Pollutants in urban wastewater and sawage sludge. London. Final Report, ICON.
  • 23. Twigg M.V. 1989. Catalyst handbook. London: Wolfe Publishing Ltd.
  • 24. Włodarczyk B, Włodarczyk P.P. 2015a. Comparison of electrooxidation efficiency in microbial fuel cell with a steel catalyst and aeration in wastewater treatment (in Polish). Engineering and Protection of Environment, 18(2), 189–198.
  • 25. Verstraete W., Morgan-Sagastume F., Aiyuk S., Rabaey K., Waweru M., Lissens G. 2005. Anaerobic digestion as a core technology in sustainable management of organic matter. Water Sci Technol. 52(1–2), 59–66.
  • 26. Włodarczyk, P.P. & Włodarczyk, B. 2015b. Analysis of the possibility of using stainless steel and copper boride alloy as catalyst for microbial fuel cell fuel electrode. Archives of Waste Management and Environmental Protection 17(1), 111–118.
  • 27. Włodarczyk B., Włodarczyk P.P. 2015c. Electricity production in microbial fuel cell with Cu-B alloy as catalyst of anode. Civil engineering, QUAESTI 2015, 305–308. DOI:10.18638/quaesti.2015.3.1.211
  • 28. Włodarczyk P.P., Włodarczyk B. 2016a. Possibility of wastewater treatment using MFC with Ni- Co catalyst of fuel electrode, Civil And Environmental Engineering Reports, 21(2), 131–145. DOI: 10.1515/ceer-2016–0028
  • 29. Włodarczyk B., Włodarczyk P.P. 2016b. Microbial fuel cell with Cu-B cathode (in Polish), Journal of Civil Engineering, Environment and Architecture, XXXIII, 63(3), 525–532.
  • 30. Włodarczyk B., Włodarczyk P.P. 2016c. Wastewater treatment in microbial fuel cell with Raney-Ni cathode (in Polish). Diagnosing of the Environment Condition, Research Methods – Forecasts, Works of Ecology Commission and Environmental Protection, Scientific Society of Bydgoszcz, 10, 183–192.
  • 31. Włodarczyk B., Włodarczyk P.P. 2016d. Using NiCo2O4 alloy as cathode catalyst of microbial fuel cell (in Polish). Diagnosing of the Environment Condition, Research Methods – Forecasts, Works of Ecology Commission and Environmental Protection, Scientific Society of Bydgoszcz, 10, 193–203.
  • 32. Włodarczyk B., Włodarczyk P.P. 2016e. Wastewater treatment in microbial fuel cell with Cu-B anode (in Polish), Selected issues of environmental protection and renewable energy field, Scientific Publishers TYGIEL, 85–94.
  • 33. Włodarczyk B., Włodarczyk P.P. 2016f. Methanol electrooxidation with Cu-B catalyst. Infrastructure and Ecology of Rural Areas, Polish Academy of Sciences Cracow, 4(2), 1483–1492. DOI: http:// dx.medra.org/10.14597/infraeco.2016.4.2.110
  • 34. Włodarczyk B., Włodarczyk P.P. 2017. Use of Ni- Co alloy as cathode catalyst in single chamber microbial fuel cell (in Polish). Ecological Engineering, 18 (2), 210–216. DOI: 10.12912/23920629/66991
  • 35. Zub S., Kurissoo T., Menert A., Blonskaja V., 2008. Combined biological treatment of high-sulphate wastewater from yeast production. Water and Environment Journal, 22(4), 274–286.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8122f987-2050-4917-a26e-2361252a4514
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.