PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laboratory testing and modelling of magnetorheological elastomers in tension mode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study deals with experimental testing and estimating the modified Dahl model parameters of magnetorheological elasto-mers (MREs) differing in volumetric concentrations of carbonyl iron particles (CIP). The authors present briefly an overview of scientific re-ports relating to MREs research. Next, they describe the structure and magnetic properties of two fabricated MREs, which were investigat-ed using a scanning electron microscope, a magnetometer and a gaussmeter. Then, they reveal the structure of a specially engineered test rig for materials sample examination and present a scenario of experiments. Next, the test results of the material’s mechanical proper-ties conducted in the absence and presence of a magnetic field were discussed. Then, they describe a modified Dahl model of the material followed by parameters estimation and validation procedure. Finally, the authors summarise the test results and outline further research steps.
Rocznik
Strony
291--299
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Faculty of Electrical and Computer Engineering, Department of Automatics and Computer Science, Cracow University of Technology, Warszawska 24, 31-155, Krakow, Poland
  • Faculty of Mechanical Engineering and Robotics, Department of Process Control, AGH University of Krakow, Mickiewicza 30 av., 30-059 Krakow, Poland
  • Faculty of Mechanical Engineering and Robotics, Department of Process Control, AGH University of Krakow, Mickiewicza 30 av., 30-059 Krakow, Poland
Bibliografia
  • 1. Brancati R, Di Massa G, Pagano S, Santini S. A magneto-rheological elastomer vibration isolator for lightweight structures. Meccanica 2019;54:333–49. https://doi.org/10.1007/s11012-019-00951-2
  • 2. Yu Y, Li Y, Li J. Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator. Meccanica 2015;50:2691–707. https://doi.org/10.1007/s11012-015-0179-z
  • 3. [Gutenko D. State of the art of soft robotic applications based on magneto-rheological materials. MATEC Web Conf 2020;322:01050. https://doi.org/10.1051/matecconf/202032201050
  • 4. Hu T, Xuan S, Ding L, Gong X. Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge en-hanced magnetorheological elastomer. Mater Des 2018;156:528–37. https://doi.org/10.1016/j.matdes.2018.07.024
  • 5. Zhang G, Zhang J, Guo X, Zhang M, Liu M, Qiao Y, et al. Effects of graphene oxide on microstructure and mechanical properties of iso-tropic polydimethylsiloxane-based magnetorheological elastomers. Rheol Acta 2022;61:215–28. https://doi.org/10.1007/s00397-022-01329-0
  • 6. Kashima S, Miyasaka F, Hirata K. Novel Soft Actuator Using Magne-torheological Elastomer. IEEE Trans Magn 2012;48:1649–52. https://doi.org/10.1109/TMAG.2011.2173669
  • 7. Keip M-A, Rambausek M. Computational and analytical investiga-tions of shape effects in the experimental characterization of magne-torheological elastomers. Int J Solids Struct 2017;121:1–20. https://doi.org/10.1016/j.ijsolstr.2017.04.012
  • 8. Samal S, Blanco I. Investigation of Dispersion, Interfacial Adhesion of Isotropic and Anisotropic Filler in Polymer Composite. Appl Sci 2021;11:8561. https://doi.org/10.3390/app11188561
  • 9. Vatandoost H, Rakheja S, Sedaghati R. Effects of iron particles’ volume fraction on compression mode properties of magnetorheolog-ical elastomers. J Magn Magn Mater 2021;522:167552. https://doi.org/10.1016/j.jmmm.2020.167552
  • 10. Winger J, Schümann M, Kupka A, Odenbach S. Influence of the particle size on the magnetorheological effect of magnetorheological elastomers. J Magn Magn Mater 2019;481:176–82. https://doi.org/10.1016/j.jmmm.2019.03.027
  • 11. Kaleta J, Królewicz M, Lewandowski D. Magnetomechanical proper-ties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices. Smart Mater Struct 2011;20: 085006. https://doi.org/10.1088/0964-1726/20/8/085006
  • 12. Schubert G, Harrison P. Magnetic induction measurements and identification of the permeability of Magneto-Rheological Elastomers using finite element simulations. J Magn Magn Mater 2016;404:205–14. https://doi.org/10.1016/j.jmmm.2015.12.003
  • 13. Vatandoost H, Sedaghati R, Rakheja S. A novel methodology for accurate estimation of magnetic permeability of magnetorheological elastomers. J Magn Magn Mater 2022;560:169669. https://doi.org/10.1016/j.jmmm.2022.169669
  • 14. Lian C, Lee K, An J, Lee C. Effect of stick-slip on magneto-rheological elastomer with a magnetic field. Friction 2017;5:383–91. https://doi.org/10.1007/s40544-017-0150-1
  • 15. Johari MAF, Mazlan SA, Nasef MM, Ubaidillah U, Nordin NA, Aziz SAA, et al. Microstructural behavior of magnetorheological elastomer undergoing durability evaluation by stress relaxation. Sci Rep 2021;11:10936. https://doi.org/10.1038/s41598-021-90484-0
  • 16. Li Y, Li J, Li W, Du H. A state-of-the-art review on magnetorheologi-cal elastomer devices. Smart Mater Struct 2014;23:123001. https://doi.org/10.1088/0964-1726/23/12/123001
  • 17. Bastola AK, Hossain M. A review on magneto-mechanical character-izations of magnetorheological elastomers. Compos Part B Eng 2020;200:108348.https://doi.org/10.1016/j.compositesb.2020.108348
  • 18. Nguyen XB, Komatsuzaki T, Truong HT. Adaptive parameter identifi-cation of Bouc-wen hysteresis model for a vibration system using magnetorheological elastomer. Int J Mech Sci 2022;213:106848. https://doi.org/10.1016/j.ijmecsci.2021.106848
  • 19. Wang P, Yang S, Liu Y, Zhao Y. Experimental Study and Fractional Derivative Model Prediction for Dynamic Viscoelasticity of Magne-torheological Elastomers. J Vib Eng Technol 2022;10:1865–81. https://doi.org/10.1007/s42417-022-00488-x
  • 20. Nguyen XB, Komatsuzaki T, Zhang N. A nonlinear magnetorheologi-cal elastomer model based on fractional viscoelasticity, magnetic di-pole interactions, and adaptive smooth Coulomb friction. Mech Syst Signal Process 2020;141:106438. https://doi.org/10.1016/j.ymssp.2019.106438
  • 21. Nedjar A, Aguib S, Djedid T, Nour A, Settet A, Tourab M. Analysis of the Dynamic Behavior of Magnetorheological Elastomer Composite: Elaboration and Identification of Rheological Properties. Silicon 2019;11:1287–93. https://doi.org/10.1007/s12633-018-9921-1
  • 22. Wang B, Bustamante R, Kari L, Pang H, Gong X. Modelling the influence of magnetic fields to the viscoelastic behaviour of soft mag-netorheological elastomers under finite strains. Int J Plast 2023;164:103578. https://doi.org/10.1016/j.ijplas.2023.103578
  • 23. Metsch P, Kalina KA, Spieler C, Kästner M. A numerical study on magnetostrictive phenomena in magnetorheological elastomers. Comput Mater Sci 2016;124:364–74. https://doi.org/10.1016/j.commatsci.2016.08.012.
  • 24. Kukla M, Górecki J, Malujda I, Talaśka K, Tarkowski P. The Determi-nation of Mechanical Properties of Magnetorheological Elastomers (MREs). Procedia Eng 2017;177:324–30. https://doi.org/10.1016/j.proeng.2017.02.233
  • 25. Janbaz M, Saeidi Googarchin H. Experimental and numerical analy-sis on magneto-hyper-viscoelastic constitutive responses of magne-torheological elastomers: A characterization procedure. Mech Mater 2021;154:103712. https://doi.org/10.1016/j.mechmat.2020.103712
  • 26. Asadi Khanouki M, Sedaghati R, Hemmatian M. Adaptive dynamic moduli of magnetorheological elastomers: From experimental identi-fication to microstructure-based modeling. Mater Sci Eng B Solid-State Mater Adv Technol 2021;267. https://doi.org/10.1016/j.mseb.2021.115083
  • 27. Yu Y, Li J, Li Y, Li S, Li H, Wang W. Comparative Investigation of Phenomenological Modeling for Hysteresis Responses of Magne-torheological Elastomer Devices. Int J Mol Sci 2019;20:3216. https://doi.org/10.3390/ijms20133216
  • 28. Yu Y, Hoshyar AN, Li H, Zhang G, Wang W. Nonlinear characteriza-tion of magnetorheological elastomer-based smart device for struc-tural seismic mitigation. Int J Smart Nano Mater 2021;12:390–428. https://doi.org/10.1080/19475411.2021.1981477
  • 29. Li W, Zhou Y, Tian T, Alici G. Creep and recovery behaviors of magnetorheological elastomers. Front Mech Eng China 2010;5:341–6. https://doi.org/10.1007/s11465-010-0096-8
  • 30. Versa 3D scanning electron microscope, Technical documentation 2023. https://www.microscop.ru/uploads/VERSA3D.pdf (accessed April 17, 2023)
  • 31. Magnetometer LakeShore 7400 series, Technical documentation 2023. https://www.lakeshore.com/products/categories/overview/discontinued-products/discontinued-products/7400-series-vsm (accessed April 17, 2023)
  • 32. FEMM 4.2, Technical documentation. 2023. https://www.femm.info/wiki/Documentation/ (accessed April 17, 2023)
  • 33. Gaussmeter GM2, Technical documentation 2023. https://www.alphalabinc.com/product/gm2/ (accessed April 17, 2023).
  • 34. Linear actuator, LA30-43-000A, Technical documentation 2023. https://www.sensata.com/sites/default/files/a/sensata-voice-coil-actuator-linear-frameless-la30-43-000a-drawing.pdf (accessed April 17, 2023)
  • 35. 9063 CompactRIO Controller, Technical documentation 2023. https://www.ni.com/pl-pl/support/model.crio-9063.html (accessed April 17, 2023).
  • 36. Linear encoder with sinus/cosinus output, LIKA SMS12, Technical documentation 2023. http://www.lika.pl/pliki_do_pobrania/CAT%20SMS12%20E.pdf (ac-cessed April 17, 2023)
  • 37. Snamina J, Orkisz P. Active vibration reduction system with mass damper tuned using the sliding mode control algorithm. J Low Freq Noise Vib Act Control 2021;40:540–54. https://doi.org/10.1177/1461348420904257.
  • 38. Wang DH, Liao WH. Magnetorheological fluid dampers: a review of parametric modelling. Smart Mater Struct 2011;20:023001. https://doi.org/10.1088/0964-1726/20/2/023001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-811f678e-5668-4458-98e5-2367b05d77e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.