Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cognitive robots constitute a highly interdisciplinary approach to the issue of therapy of children with developmental disorders. Cognitive robots become more popular, especially in action and language integration areas, joining the experience of psychologists, neuroscientists, philosophers, and even engineers. The concept of a robot as a cognitive companion for humans may be very useful. The interaction between humans and cognitive robots may be a mediator of movement patterns, learning behaviors from demonstrations, group activities, and social behaviors, as far as higher-order concepts such as symbol manipulation capabilities, words acquisition, and sensorimotor knowledge organization. Moreover there is an occupation to check many theories, such as transferring the knowledge and skills between humans and robots. Although several robotic solutions for children have been proposed the diffusion of aforementioned ideas is still limited. The review summarizes the current.
Czasopismo
Rocznik
Tom
Strony
93--98
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
autor
- Department of Cognitive Science, Nicolaus Copernicus University, Toruń
- Neurocognitive Laboratory, Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
autor
- Neurocognitive Laboratory, Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
- Department of Physiotherapy, Ludwik Rydygier Collegium Medium in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
autor
- Neurocognitive Laboratory, Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
- Institute of Mechanics and Applied Computer Sciences, Kazimierz Wielki Universit, Bydgoszcz, Poland
- Department of Informatics, Nicolaus Copernicus University, Toruń, Poland
autor
- Department of Cognitive Science, Nicolaus Copernicus University, Toruń, Poland
- Neurocognitive Laboratory, Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
autor
- Department of Cognitive Science, Nicolaus Copernicus University, Toruń, Poland
- Neurocognitive Laboratory, Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
Bibliografia
- 1. Bassolino M, Sandini G, Pozzo T. Activating the motor system through action observation: is this an efficient approach in adults and children? Dev Med Child Neurol 2015;57(Suppl 2):42–5.
- 2. Ritter H, Haschke R. Hands, dexterity, and the brain. In: Cheng G, editor. Humanoid robotics and neuroscience: science, engineering and society. Boca Raton: CRC Press, 2015.
- 3. Gori M, Giuliana L, Sandini G, Burr D. Visual size perception and haptic calibration during development. Dev Sci 2012;15:854–62.
- 4. Gori M, Sandini G, Martinoli C, Burr D. Poor haptic orientation discrimination in nonsighted children may reflect disruption of cross-sensory calibration. Curr Biol 2010;20:223–5.
- 5. De La Cruz VM, Di Nuovo A, Di Nuovo S, Cangelosi A. Making fingers and words count in a cognitive robot. Front Behav Neurosci 2014;8:13.
- 6. Henrichs I, Elsner C, Elsner B, Wilkinson N, Gredebäck G. Goal certainty modulates infants’ goal-directed gaze shifts. Dev Psychol 2014;50:100–7.
- 7. Vercillo T, Burr D, Sandini G, Gori M. Children do not recalibrate motor-sensory temporal order after exposure to delayed sensory feedback. Dev Sci 2015;18:703–12.
- 8. Gori M, Vercillo T, Sandini G, Burr D. Tactile feedback improves auditory spatial localization. Front Psychol 2014;5:1121.
- 9. Gori M, Squeri V, Sciutti A, Masia L, Sandini G, Konczak J. Motor commands in children interfere with their haptic perception of objects. Exp Brain Res 2012;223:149–57.
- 10. Sciutti A, Burr D, Saracco A, Sandini G, Gori M. Development of context dependency in human space perception. Exp Brain Res 2014;232:3965–76.
- 11. Daee P, Mirian MS, Ahmadabadi MN. Reward maximization justifies the transition from sensory selection at childhood to sensory integration at adulthood. PLoS One 2014;9:e103143.
- 12. Gori M, Tinelli F, Sandini G, Cioni G, Burr D. Impaired visual sizediscrimination in children with movement disorders. Neuropsychologia 2012;50:1838–43.
- 13. Lohan KS, Griffiths SS, Sciutti A, Partmann TC, Rohlfing KJ. Co-development of manner and path concepts in language, action, and eye-gaze behavior. Top Cognit Sci 2014;6:492–512.
- 14. Gori M, Sandini G, Burr D. Development of visuo-auditory integration in space and time. Front Integr Neurosci 2012;6:77.
- 15. Samadani AA, Moussavi Z. The effect of aging on human brain spatial processing performance. Conf Proc IEEE Eng Med Biol Soc 2012;2012:6768–71.
- 16. Chauhan A, Seabra Lopes L. Using spoken words to guide openended category formation. Cognit Process 2011;12:341–54. 17. Tinelli F, Anobile G, Gori M, Aagten-Murphy D, Bartoli M, Burr DC, et al. Time, number and attention in very low birth weight children. Neuropsychologia 2015;73:60–9.
- 18. Bisio A, Avanzino L, Gueugneau N, Pozzo T, Ruggeri P, Bove M. Observing and perceiving: A combined approach to induce plasticity in human motor cortex. Clin Neurophysiol 2015;126:1212–20.
- 19. Sparaci L, Formica D, Lasorsa FR, Mazzone L, Valeri G, Vicari S. Untrivial pursuit: measuring motor procedures learning in children with autism. Autism Res 2015;8:398–411.
- 20. den Brok WL, Sterkenburg PS. Self-controlled technologies to support skill attainment in persons with an autism spectrum disorder and/or an intellectual disability: a systematic literature review. Disabil Rehabil Assist Technol 2015;10:1–10.
- 21. Schoepflin ZR, Chen X, Ragonesi CB, Galloway JC, Agrawal SK. Design of a novel mobility device controlled by the feet motion of a standing child: a feasibility study. Med Biol Eng Comput 2011;49:1225–31.
- 22. Dautenhahn K. Socially intelligent robots: dimensions of human-robot interaction. Philos Trans R Soc Lond B Biol Sci 2007;362:679–704.
- 23. Weigmann K. Robots emulating children. Scientists are developing robots using biology as their inspiration. Will they succeed in building cognitive agents? EMBO Rep 2006;7:474–6.
- 24. Pearson Y, Borenstein J. The intervention of robot caregivers and the cultivation of children’s capability to play. Sci Eng Ethics 2013;19:123–37.
- 25. Encarnação P, Alvarez L, Rios A, Maya C, Adams K, Cook A. Using virtual robot-mediated play activities to assess cognitive skills. Disabil Rehabil Assist Technol 2014;9:231–41.
- 26. Taffoni F, Formica D, Campolo D, Keller F, Guglielmelli E. Block-box instrumented toy: a new platform for assessing spatial cognition in infants. Conf Proc IEEE Eng Med Biol Soc 2009;2009:210–3.
- 27. Shimoda M. Brain, mind, body and society: autonomous system in robotics. J Int Bioethique 2013;24:41–8, 178–9.
- 28. Costescu CA, Vanderborght B, David DO. Reversal learning task in children with autism spectrum disorder: a robot-based approach. J Autism Dev Disord 2015;45:3715–25.
- 29. Giannopulu I. Multimodal interactions in typically and atypically developing children: natural versus artificial environments. Cognit Process 2013;14:323–31.
- 30. Jordan K, King M, Hellersteth S, Wirén A, Mulligan H. Feasibility of using a humanoid robot for enhancing attention and social skills in adolescents with autism spectrum disorder. Int J Rehabil Res 2013;36:221–7.
- 31. Moriguchi Y, Kanda T, Ishiguro H, Itakura S. Children perseverate to a human’s actions but not to a robot’s actions. Dev Sci 2010;13:62–8.
- 32. Douglas J, Reeson B, Ryan M. Computer microtechnology for a severely disabled preschool child. Child Care Health Dev 1988;14:93–104.
- 33. Sage KD, Baldwin D. Social gating and pedagogy: mechanisms for learning and implications for robotics. Neural Netw 2010;23:1091–8.
- 34. Masia L, Frascarelli F, Morasso P, Di Rosa G, Petrarca M, Castelli E, et al. Reduced short term adaptation to robot generated dynamic environment in children affected by cerebral palsy. J Neuroeng Rehabil 2011;8:28.
- 35. Masia L, Frascarelli F, Morasso P, Di Rosa G, Petrarca M, Castelli E, et al. Abnormal adaptation in children affected by cerebral palsy to robot generated dynamic environment. Conf Proc IEEE Eng Med Biol Soc 2010;2010:3410–3.
- 36. Amirabdollahian F, Robins B, Dautenhahn K, Ji Z. Investigating tactile event recognition in child-robot interaction for use in autism therapy. Conf Proc IEEE Eng Med Biol Soc 2011;2011:5347–51.
- 37. Trafton JG, Harrison AM. Embodied spatial cognition. Top Cognit Sci 2011;3:686–706.
- 38. Metta G, Natale L, Nori F, Sandini G, Vernon D, Fadiga L, et al. The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw 2010;23:1125–34.
- 39. Kozima H, Nakagawa C, Yasuda Y. Children-robot interaction: a pilot study in autism therapy. Prog Brain Res 2007;164:385–400.
- 40. Cook AM, Bentz B, Harbottle N, Lynch C, Miller B. School-based use of a robotic arm system by children with disabilities. IEEE Trans Neural Syst Rehabil Eng 2005;13:452–60.
- 41. Cook AM, Meng MQ, Gu JJ, Howery K. Development of a robotic device for facilitating learning by children who have severe disabilities. IEEE Trans Neural Syst Rehabil Eng 2002;10:178–87.
- 42. Smania N, Gandolfi M, Marconi V, Calanca A, Geroin C, Piazza S, et al. Applicability of a new robotic walking aid in a patient with cerebral palsy. Case report. Eur J Phys Rehabil Med 2012;48:147–53.
- 43. Mikołajewska E, Mikołajewski D. Exoskeletons in neurological diseases – current and potential future applications. Adv Clin Exp Med 2011;20:227–33.
- 44. Montesano L, Díaz M, Bhaskar S, Minguez J. Towards an intelligent wheelchair system for users with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng 2010;18:193–202.
- 45. Williams L, Jackson CP, Choe N, Pelland L, Scott SH, Reynolds JN. Sensory-motor deficits in children with fetal alcohol spectrum disorder assessed using a robotic virtual reality platform. Alcohol Clin Exp Res 2014;38:116–25.
- 46. Cardoso-Leite P, Bavelier D. Video game play, attention, and learning: how to shape the development of attention and influence learning? Curr Opin Neurol 2014;27:185–91.
- 47. Labruyère R, Gerber CN, Birrer-Brütsch K, Meyer-Heim A, van Hedel HJ. Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res Dev Disabil 2013;34:3906–15.
- 48. Wass SV, Porayska-Pomsta K. The uses of cognitive training technologies in the treatment of autism spectrum disorders. Autism 2014;18:851–71.
- 49. Wójcik GM, Kaminski WA. Liquid state machine and its separation ability as function of electrical parameters of cell. Neurocomputing 2007;70:2593–7.
- 50. Wojcik GM. Electrical parameters influence on the dynamics of the Hodgkin-Huxley liquid state machine. Neurocomputing 2012;79:68–74.
- 51. Angryk R, Czerniak J. Heuristic algorithm for interpretation of multi-valued attributes in similarity-based fuzzy relational databases. Int J Approx Reason 2010;51:895–911.
- 52. Czerniak JM, Apiecionek Ł, Zarzycki H. Application of ordered fuzzy numbers in a new OFNAnt algorithm based on ant colony optimization. Commun Comput Inf Sci 2014;424:259–70.
- 53. Mikolajewska E, Mikolajewski D. E-learning in the education of people with disabilities. Adv Clin Exp Med 2011;20:103–9.
- 54. Mikolajewska E, Mikolajewski D. The prospects of braincomputer interface applications in children. Cent Eur J Med 2014;9:74–9.
- 55. Mikołajewska E, Mikołajewski D. Bobath method in rehabilitation of adults and children [article in Polish]. Niepełnosprawność – zagadnienia, problemy, rozwiązania 2016;I:7–23.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-811e77f6-6077-439b-a6d2-2c064693f531